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CHAPTER 1 

 GENERAL INTRODUCTION 

 

Dissertation Organization 

This dissertation is organized into 6 chapters. The first chapter is a review focusing on the 

research and development of surface cross-linked micelles (SCMs) and their applications in 

different fields. Chapters 2 to 4 have already been published as peer-reviewed papers. Chapter 5 

is a manuscript to be submitted. Chapter 6 is a general conclusion summarizing the significance 

and future growth of the research done in this dissertation. 

The second chapter was published in the Journal of Colloid and Interface Science in 

2013. Surface cross-linked micelle systems were studied and using fluorescent probes and 

chemical reactions; their surface properties were investigated. Cross-linking of a micelle showed 

profound impact on its properties, leading to higher surface basicity. The higher catalytic activity 

of the SCMs over their non-cross-linked counterparts (CTAB micelles) originated from the 

stronger surface basicity of the former.  

The third chapter was published in the Organic and Biomolecular Chemistry in 2013. 

Histidine-functionalized SCMs were prepared and studied for their enhanced nucleophilicity and 

how they impacted ester hydrolysis in acidic medium. Crosslinking and polycationic nature of 

the SCMs has the ability to alter the pKa value of the functional group attached to its surface.  

This effect was studied using fluorescence spectroscopy and phosphate ester hydrolysis. The 

functionalized SCMs displayed faster ester hydrolysis and excited state proton transfer (ESPT) of 

photo-acids than the parent SCMs.  
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The fourth chapter was published in the Chemical Communications in 2014. The SCMs 

were labeled with a catalytic group, 4-Dimethylaminopyridine (DMAP), internally and at the 

interface. This work demonstrated how control of the microenvironment around the catalyst 

affected the nature of nucleophilic catalysis of ester/phosphate ester hydrolysis. Internal 

functionalized SCMs displayed remarkable nucleophilic catalysis in acidic medium because the 

catalytic group had strong resistance to protonation. Also, the catalytic activity was enhanced for 

more hydrophobic substrates with the same catalytic group.  

The fifth chapter is a manuscript to be submitted. SCMs containing chromophores are 

used as a platform for artificial light harvesting system. A crosslinkable surfactant bearing 

dansyl-like fluorophore was used to prepare dansyl-SCMs by a one-pot reaction at room 

temperature. Click cross-linking of the surfactants afforded a high-density of the antenna 

chromophores in the SCMs with minimal self-quenching and excimer formation. The 

hydrophobic and electrostatic interactions facilitated the energy transfer from the dansyls to the 

acceptor, Eosin Y (EY). The dissertation finishes in Chapter 6 with a general conclusion and an 

outline of the research for the future directions. 

 

Literature Reviews 

An interesting property of enzymes is their ability to modify acid/base properties of the 

active site to enhance the reactivity. It has been well documented in biological systems that 

unspecific hydrophobic interactions and specific electrostatic effects [1-4] are the principal ways 

to achieve such modifications. In supramolecular systems, water-soluble macrocyclic hosts like 

cyclodextrins, calixarenes, and cucurbiturils have been studied as enzyme mimics [5-8].  
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Micelles, also commonly classified as supramolecular nanoenzyme mimics, are small, 

spherical aggregates of surfactants with many applications in catalysis, drug delivery, cleaning, 

solubilization, sensing, molecular recognition, etc., [9-15]. “Functional micelles” are analogues 

of enzymatic catalysts with a non-polar interior and a polar exterior. These self-assembled 

structures are in dynamic equilibrium with the individual surfactants with a lifetime in the 

millisecond range. This constant rearrangement of surfactants is the reason behind reduced 

stability, rapid exchange of components, and fast disintegration upon dilution. Since locking 

them into stable structures may help address these challenges, intensive efforts have been made 

by researchers to capture micelles by covalent bonds. Surfmers have been useful in this regard as 

these surfactants contain polymerizable groups [16]. However, it is a challenge to control their 

degree of polymerization, which can lead to formation of oligomers instead of spherical, well-

dispersed water-soluble nanostructures [17].  

Working towards this end, our group reported a simple method to capture micelles by 

covalent fixation [18]. Unlike dynamic micellar systems that constantly exchange surfactants and 

their cargo, the surface cross-linked micelles (SCMs) are water-soluble organic nanoparticles 

with enhanced properties. They provide an excellent platform for multivalent interactions, facile 

post-modification, tunable surface potential, controlled release, surface and core 

functionalization, and encapsulation. [19-21].  

In this dissertation, I present several applications of these surface cross-linked 

nanomaterials as potential catalysts and light-harvesting materials. The microenvironment of 

these covalently fixed micelles are studied and the impact of crosslinking on their surface 

properties is investigated. Different kinds of functionalized surfactants were synthesized and 

studied for their micelle formation and surface activity. Surfactants with polymerizable tail were 
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synthesized to facilitate covalent capture of catalytic groups in the core. Chromophore-

containing surfactants were prepared and investigated for their energy transfer within and beyond 

a single SCM. 
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CHAPTER 2  

PROPERTIES OF SURFACE-CROSS-LINKED MICELLES PROBED BY FLUORESCENCE 

SPECTROSCOPY AND THEIR CATALYSIS OF PHOSPHATE ESTER HYDROLYSIS 

 

A paper published in Journal of Colloid and Interface Science, 2013, 390, 151-157. 

Geetika Chadha and Yan Zhao 

 

Abstract 

Cross-linking of a tripropargylated ammonium surfactant by a diazide cross-linker in the 

presence of Cu(I) catalysts yielded surface-cross-linked micelles (SCMs) as water-soluble 

nanoparticles. Cross-linking had a profound impact on the properties of the micelles. The 

binding of 1-anilinonaphthalene-8-sulfonic acid (ANS) indicated that the SCMs contained two 

types of binding sites, favoring the polar and nonpolar excited states of the probe, respectively. 

The SCMs also shielded the excited states of ANS from solvent exposure better than the micelles 

of cetyltrimethylammonium bromide (CTAB). The SCMs inhibited the excited state proton 

transfer (ESPT) of a polyanionic probe, pyranine, more strongly than CTAB micelles. The ESPT 

of a more hydrophobic probe, 2-naphthol, was found to be influenced by the stronger surface 

basicity of the SCMs, as well as their better shielding of the probe from the aqueous phase than 

the CTAB micelles. The stronger surface basicity of the SCMs also enabled them to catalyze the 

hydrolysis of an activated phosphate ester at neutral pH better than CTAB micelles 
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Introduction 

 Micelles are aggregates of surfactants formed normally in aqueous solution in a balance 

of hydrophobic interactions among the hydrophobic tails of the surfactants and 

electrostatic/steric repulsion among the headgroups [1,2]. The former provides the driving force 

to the aggregation and the latter creates boundaries for the self-assembly, preventing infinite 

growth of the aggregates. Micellization is the fundamental reason behind many applications of 

surfactants, including washing, solubilization, and catalysis. 

Common surfactant micelles are dynamic assemblies with a lifetime of 10-3–10-2 s [3]. 

Chemists have long been interested in capturing these noncovalent structures by covalent bonds 

[4,5]. If micelles can be locked into stable water-soluble nanoparticles and decorated with 

desired functional groups, many potential applications can be envisioned. Toward this end, 

chemists have prepared surfmers or surfactants with reactive functionalities that can undergo 

chemical ligation on the micelles. The most commonly used reactive group is a vinyl that can 

polymerize under thermal or photolytic initiation. The majority of surfmers in the literature have 

the vinyl on the hydrophobic tail or in the headgroup of the surfactant [6–8]. Sometimes, the 

polymerizable group is located on the counterion of ionic surfactants [9]. 

Although micellization was found to be highly important to the effective polymerization 

of surfmers, the materials obtained from such reactions frequently had a degree of 
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polymerization much higher than the aggregation number of the micelle [10]. Hence, the 

polymerization went beyond a single micelle and involved intermicellar reactions. Sometimes, 

oligomers were obtained that aggregated into particles significantly larger that the parent micelle 

[11]. These results are understandable. Because the exchange of surfactants between micelles 

generally is orders of magnitude faster than the rate of propagation in radical polymerization, 

topological polymerization within a single micelle is extremely difficult [10–12]. 

We recently reported a simple method to cross-link surfactant micelles by the click 

reaction (Scheme 1) [13]. The tripropargylated cationic surfactant (1) has a CMC of 0.14 mM. 

Because of the high density of terminal alkyne on the surface, the micelle of 1 under- goes facile 

1,3-dipolar cycloaddition with azido cross-linkers such as 2 in the presence of Cu(I) catalysts. 

The large thermodynamic driving force of the cycloaddition, the high effective concentration of 

alkyne on the micelle surface, and the efficiency of the Cu(I) catalysts [14] all contributed to the 

successful capture of the micelles. The surface-cross-linked micelles (SCMs) obtained were 

characterized by a number of techniques including NMR spectroscopy, DLS, and TEM. When 

the 1,2-diol groups on the SCMs (see the structure of 2) were cleaved by periodic acid, 

compounds 3 and 4 were identified by ESI–MS, with the former being the major product. The 

results were consistent with the 1:1 stoichiometry employed in the cross-linking. The residual 

alkyne left on the surface allowed facile surface modification, simply by adding any azido-

functionalized ligands or polymers [13]. More recently, the SCM was used as a platform for 

artificial light harvesting. Interestingly, fluorescence quenching suggested that each SCM 

contained about 50 cross- linked surfactants [15], in agreement with our earlier DLS study that 

indicated 40–50 surfactant molecules per SCM. 
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In addition to its facile synthesis and post-modification, the SCMs have other interesting 

properties. When cleavable bonds were introduced in the azide cross-linkers, the SCMs could be 

broken apart with chemical triggers [16]. Because the cationically charged ammonium groups 

repel each other, the SCMs are under significant electrostatic stress, raising the ground state 

energy of the system and making the SCMs extremely sensitive to the cleaving agent. Guest 

molecules trapped within the SCMs were found to be ejected very rapidly (<1 min) with the 

addition of even a small amount of the cleaving agent. More recently, we found that these SCMs 

could serve as a reservoir of protected surfactants. The SCMs have low surface activity due to 

the hydrophilic exterior and completely buried hydrophobes. Cleavage of the reversible cross- 

linkages exposes the hydrophobic tails of the surfactants and releases surface-active materials 

that could be used for different purposes including the controlled leakage of liposomes [17]. 

 

Scheme 1. Preparation of surface-crosslinked micelle (SCM). 
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Fluorescence spectroscopy can reveal a wealth of information about the local 

environment around the fluorophore [18]. In this paper, we report the investigation into the 

SCMs by fluorescence spectroscopy. Their local hydrophobicity, interactions with anionic 

guests, shielding of hydrophobic guests, and ability to influence excited state proton transfer 

(ESPT) were studied by a number of fluorescent probes. Interesting differences were observed 

between the SCMs and micelles formed by a control cationic surfactant, CTAB. The SCMs were 

found to have stronger surface basicity and able to hydrolyze activated phosphate esters better 

than their non-covalent counterpart, the CTAB micelles. 

 

Experimental Section 

General 

All reagents and solvents were of ACS-certified grade or higher and used as received 

from commercial suppliers. Millipore water was used to prepare buffers. Routine 1H and 13C 

NMR spectra were recorded on a Varian VXR-400 or on a Varian MR-400 spectrometer. 

Fluorescence spectra were recorded on a Varian Cary Eclipse fluorescence spectrophotometer. 

UV–vis spectra were recorded on a Cary 100 Bio UV–visible spectrophotometer. The 

preparation and the characterization of the SCMs were reported previously [13]. 

 

Fluorescence Study 

A typical procedure for the fluorescence experiment is as follows: Stock solutions of the 

SCM (the concentration of the cross-linked surfactant was 2.0 mM), ANS (80 µM), pyranine (80 

µM), and 2-naphthol (80 µM) in Millipore water were prepared. An aliquot (1.20 mL) of the 

SCM solution was added to a cuvette containing 800 µL of HEPES buffer (25 mM, pH = 7), 
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followed by an aliquot (100 µL) of the stock solution of the appropriate dye. After the sample 

was vortexed briefly, the cuvette was placed in the spectrometer and equilibrated to 35.0 °C. The 

fluorescence spectrum was recorded, with the excitation wavelength for ANS, pyranine, and 2-

naphthnol being 388, 390, and 315 nm, respectively. The same procedure was repeated for the 

CTAB samples. Triplicate data were generally collected for each sample. 

 

Kinetic Measurement 

HPNPP was prepared according to a literature procedure [19]. A stock solution (10 mM) 

of HPNPP in Millipore water was prepared. For the kinetic measurement, a typical procedure is 

as follows: Aliquots of the SCM solution were added to a series of cuvettes containing 800 µL of 

HEPES buffer (25 mM, pH = 7). The concentrations of cross-linked surfactant in the SCM in the 

samples were 0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.5 mM, respectively. The cuvettes were placed in the 

spectrometer and equilibrated to 35.0°C. After 5 min, aliquots (40 µL) of the HPNPP solution 

were added to the above cuvettes, and the absorbance of p-nitrophenolate at 400 nm was 

monitored over a period of 3 h. The same procedure was repeated for the CTAB samples. 

Triplicate data were generally collected for each sample. 

 

Results and Discussion 

Chart 1 shows the structures of the fluorescent and chemical probes used in this study. 

ANS (1-anilinonaphthalene-8-sulfonic acid, ammonium salt) is a fluorophore highly sensitive to 

environmental polarity [20]. It fluoresces weakly in water but strongly when bound to proteins or 

membranes. Its anionic character makes it particularly suitable for probing cationic micellar 

systems. 
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Chart 1. Fluorescent and Chemical Probes Used in the Study. 

 

Pyranine and 2-naphthol are both photoacids. The pKa values for the ground and excited 

state of pyranine are 7.2 and 0.5, respectively [21], and those for 2-naphthol are 9.3 and 2.8 

[22,23]. Excitation thus makes both compounds more acidic, and the ratio between the 

protonated and deprotonated excited states can be used to probe a number of parameters 

including local pH, polarity, and the interactions between the probes and their surroundings 

[23,24]. In addition to their different pK* values (i.e., acidity constant of the excited state), the 

two probes are very different in polarity, allowing us to probe different locations of the micelles. 

Lastly, 2-hydroxylpropyl-4-nitrophenyl phosphate (HPNPP) is a model compound in RNA 

hydrolysis. Its hydrolysis releases p-nitrophenol that can be detected easily by UV–vis 

spectroscopy. Its anionic character also enables it to adsorb onto a cationic micelle easily, 

helping us understand the effects of the micelles on the chemical reaction. 
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Binding of ANS 

Fig. 1a shows the fluorescence spectra of ANS in water, CTAB, and SCM, respectively. 

The concentration of the cross-linked surfactant in the SCM was kept the same as that of the 

CTAB, 1.2 mM, which is above the latter’s CMC (0.9 mM). ANS was found to emit very weakly 

in water. In the presence of CTAB micelles, the emission became stronger with the maximum 

emission wavelength λem = 485 nm. The emission wavelength of ANS in solution depends on the 

polarity of the solvent, ranging from 523 nm in water to 465 nm in 1-octanol [25]. The observed 

emission wavelength in the CTAB solution was comparable to that in the ethylene glycol (λem = 

484 nm). Thus, the ANS probe was in a fairly polar region of the micelle, most likely near the 

micellar surface [26]. 

 

Fig. 1 (a) Emission spectra of ANS in HEPES buffer (dashed line), CTAB (dotted line), and 

SCM (solid line). pH = 7. [ANS] = 0.4 µM. [CTAB] = [crosslinked surfactant in SCM] = 1.2 

mM. λex = 388 nm. (b) Peak fitting of the emission spectra of ANS in SCM showing two peaks 

with λem = 452 and 487 nm, respectively. The dashed spectra were from peak fitting of the 

experimental spectrum. 
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Ion binding and reactivity on charged micelle surfaces have been described by 

pseudophase ion exchange and Poisson–Boltzmann models [27]. Regardless of the models used, 

because excitation and fluorescence are much faster than typical binding and chemical reactions, 

the fluorescence spectrum of a probe in a micellar solution is a superposition of the spectra of the 

dissolved and micelle- bound populations of the probe, even if the entry rate of the probe into the 

micelles is diffusion-controlled [28]. On the other hand, since over 95% of 2-naphthol, pyranine, 

and other similar sulfonated fluorescent probes in CTAB solutions were found to be bound by 

the micelles by fluorescence quenching [28], we assumed that the spectra obtained in our 

micellar solutions also came from the micelle-bound state. The assumption was reasonable given 

the negligible emission of ANS in the HEPES buffer (Fig. 1a). 

As shown by Fig. 1b, the emission spectrum of ANS in SCM consisted of two peaks 

centered at 452 and 487 nm, respectively. Evidently, the SCM contained two types of binding 

sites. The microenvironment of one of them was similar to that found in the CTAB micelles, as 

the emission wavelengths (487 and 485 nm) were nearly identical. The other site seemed to be 

much less polar according to the highly blue-shifted emission wavelength (452 nm). 

It might be surprising that the peak at 452 nm was even more blue-shifted than the 

emission in 1-octanol (λem = 465 nm). Given the amphiphilic nature of the ANS probe, it is 

unlikely for the molecule to penetrate deep inside the cross-linked micelle. Instead, the sulfonate 

group, due to its strong solvation by water, should be located on the surface of the micelle [26], 

where the polarity should be much higher than that of 1-octanol. 

The environmental sensitivity of ANS derives from their two excited states—a nonpolar 

state that is less sensitive to the environment and a highly sensitive charge-transfer state [20]. It 

has been reported that, when these probes are in a highly viscous solvent such as glycerol [29] or 
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when bound to proteins [30,31], the non-polar state could dominate even when the 

environmental polarity was high. The result was attributed to the inhibition of the formation of 

the charge-transfer state, which involves a rotation of the phenyl group in the excited state [20]. 

It seems that the cross-linking has created binding sites in the SCM similar to those in proteins, 

which have high microviscosity and might have inhibited the rotation of the phenyl group of 

ANS. 

Not only the polar and the nonpolar excited states of ANS appeared simultaneously when 

the probe was bound by the SCM, the emission of both states was also substantially higher than 

the (polar) excited state in CTAB (compare Fig. 1a and b). The weak emission of ANS 

derivatives in water is known to result from fast nonradiative relaxation caused by the solvent 

[20]. Clearly, the SCM provided better protection to the probe than the CTAB micelle, at least to 

the polar charge-transfer state. The nonpolar state could not be detected in the dynamic CTAB 

micelle at all. 

 

Fig. 2 (a) The emission intensity of ANS at 485 nm against the concentration of CTAB in water. 

(b) The emission intensity of ANS at 460 nm against the concentration of the cross-linked 

surfactant in SCM in water.  [ANS] = 0.4 µM. λex = 388 nm.  
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Another difference in the CTAB micelle and the SCM was in their concentration-

dependency on the surfactant. Fig. 2 plots the maximum emission intensity of ANS against 

increasing concentrations of the surfactant (free or cross-linked). Not surprisingly, the ANS 

emission in the CTAB solution was highly sensitive to the surfactant concentration and increased 

until it reached the CMC (0.9 mM). The data also suggested pre-micellar association between the 

surfactant and the probe, possibly due to the opposite charges of the two. In contrast, the 

emission was fairly constant over the same range of concentration for the SCM [32]. The 

crosslinking, as expected, fixed the micelles into nanoparticles stable at all concentrations, 

making the ANS emission quite concentration independent for the SCM [13]. Also note that the 

emission intensity of ANS in SCM was much stronger than that in the CTAB solution, as a result 

of the better protection provided by the former. 

 

Inhibition of ESPT 

Pyranine is a photoacid whose excited state (pK* = 0.5) is much more acidic than the 

ground state (pKa = 7.2) [21]. As shown by Fig. 3a, at pH = 6–8, the dominant emission appeared 

at ca. 510 nm, which corresponds to that of the deprotonated excited state. The acidic form (λem 

≈ 445 nm) was very weak, in agreement with what was reported in the literature [21]. This was 

due to the very fast deprotonation step of the excited photoacid with a rate constant of ca. 1010 s-1 

in pure water. In the presence of CTAB micelles, the emission from the protonated form was 

greatly enhanced (Fig. 3b). Thus, interactions with the CTAB micelle inhibited the proton 

transfer in the excited state. Consistent with a literature report [33], some spectroscopic shifts 

occurred with the acidic form emitting at 430 nm and the basic form at ~530 nm. According to 
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the laser-initiated pH-jump experiments, the deprotonation of the excited pyranine was slowed 

down by over an order of magnitude on the CTAB micelles [33]. 

 

Fig. 3 Emission spectra of pyranine in (a) buffer, (b) CTAB solution, and (c) SCM solution at pH 

= 6 (solid line), 7 (dotted line), and 8 (dashed line). [pyranine] = 0.4 µM. [CTAB] = [crosslinked 

surfactant in SCM] = 1.2 mM. λex = 390 nm.  

 
The SCM had a noticeably larger inhibiting effect on the photolytic deprotonation, 

evident from the even stronger emission of the protonated probe (Fig. 3c). The effect was 

particularly noticeable at pH = 6. The ratio between the protonated form and the deprotonated 

form, as measured by the intensity ratio at 430 and 520 nm, went from 0.72 in the CTAB 

micelles to 2.0 in the SCMs. Since the interactions between the anionic probe and the cationic 

CTAB micelle were responsible for the inhibited deprotonation in the excited state [33], the 

interactions between pyranine and the SCM must be significantly stronger. The results are quite 

reasonable—as the cationic surfactants get cross-linked into a stable polycationic nanoparticle, 

the electrostatic interactions with a polyanionic guest are expected to increase. 
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Given the large size of pyranine and its polyanionic character, it is unlikely for the probe 

to penetrate into the micellar core (whether in the case of cross-linked or the regular micelle). 

Behavior of the photoacid most likely reflects the property of the micelle/ water interface, where 

the majority of the probe should be located. 2-Naphthol is quite different, on the other hand. 

Being neutral and possessing a fairly hydrophobic naphthyl ring, most of the probe should be 

located in a more hydrophobic region of the micelle when solubilized by the micelle. 

Fig. 4a shows the normalized fluorescence spectra of 2-naphthol in buffer at pH = 6, 7, 

and 8. The pKa values for the ground and excited states of 2-naphthol are 9.3 and 2.8, 

respectively [22,23]. If the rate of deprotonation is faster than fluorescence, the fluorescence 

spectrum will only show the deprotonated species at these pH values. In reality, the rate of the 

excited state deprotonation for the probe, its fluorescence, and the nonradiative decay are known 

to be competitive, making the emission of 2-naphthol highly sensitive to its environment [34]. As 

can be seen from the fluorescence spectra, 2-naphthol gave two emission peaks at 355 and 410 

nm in aqueous buffer. The former corresponds to the protonated excited state and the latter 

deprotonated. The spectra were normalized to the emission intensity of the protonated form, 

allowing us to compare the ESPT in different situations more easily. With an increase of the 

solution pH, the deprotonated form showed a gradual increase from 0.66 to 0.72 to 0.78 (Fig. 

4a). 
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Fig. 4 Emission spectra of 2-napthol in (a) buffer, (b) CTAB solution, and (c) SCM solution at 

pH = 6 (solid line), 7 (dotted line), and 8 (dashed line). [2-napthol] = 0.4 µM. [CTAB] = [cross-

linked surfactant in SCM] = 1.2 mM. λex = 315 nm.  

 

The CTAB micelles had a large impact on the ESPT of 2-naphthol. The normalized 

intensity of the deprotonated probe was 0.73, 1.12, and 1.48 at pH = 6, 7, and 8, respectively 

(Fig. 4b). Clearly, at every solution pH tested, the CTAB micelles assisted the deprotonation of 

the excited probe. The effect of micelles on the ESPT of 2-naphthol has been reported (albeit at 

different pH values) [35,36]. The hydrophobic probe, although solubilized easily by a micelle, 

tends to stay near the surface of the micelle. Because both the deprotonated species and the 

proton released during deprotonation are better solvated by water instead of hydrocarbon, a 

hydrophobic environment inhibits the ESPT of the probe [37]. In neutral and anionic micelles, 

significant retardation of the deprotonation was observed. The effect was counterbalanced by 

positively charged micelles due to their electrical potential [38]. Our fluorescence data supported 

this conclusion, as the presence of CTAB micelles generally promoted the deprotonated species 

(compare Fig. 4a and b). 
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Another difference between the fluorescence spectra in aqueous buffer and in the CTAB 

micelle is the magnitude of the pH effect on the ESPT. When the solution pH was increased from 

6 to 8, the relative intensity of the deprotonated probe increased by <20% in aqueous solution but 

more than doubled in CTAB micelle. Thus, the increasing hydroxide concentration in the bulk 

had a much larger effect on the ESPT of 2-naphthol when the probe was solubilized by the 

cationic micelle. A very likely reason for the stronger pH effect in the CTAB micelle comes 

from its cationic character. Essentially, the positively charged micelle is able to concentrate 

hydroxide ions near its surface, increasing the local pH on the surface of the micelle. In fact, the 

surface potential of the cationic micelle is estimated to afford a local pH of 9.5 when the bulk pH 

is 7 [39]. 

Given the effect of the cationic micelle on the ESPT of 2-naphthol, it is interesting to see 

that the probe behaved very differently when solubilized by the cationic SCM (Fig. 4c). The 

relative intensity of the deprotonated probe was 0.92, 0.99, and 1.10 at pH = 6, 7, and 8, 

respectively. These numbers were larger than the corresponding values in aqueous buffer (0.66, 

0.72, and 0.78). In comparison with water, therefore, the positively charged SCMs did promote 

the photo-deprotonation of 2-naphthol. 

When the relative intensities of the deprotonated 2-naphthol in CTAB micelles (0.73, 

1.12, and 1.48) and SCMs (0.92, 0.99, and 1.10) are compared, no consistent trend was observed. 

At pH = 6, the SCM seemed to be better than the CTAB micelle at promoting the ESPT, but the 

effect was reversed at pH = 7 and 8. The magnitude of the pH effect, on the other hand, was 

noticeably smaller in the cross-linked micelles. The pH change from 6 to 8, for example, 

increased the emission intensity of the naphthoxide solubilized by the SCM by 20% but more 

than doubled the intensity of the naphthoxide solubilized by CTAB. 
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A possible reason for the overall lower intensity of the SCM solubilized naphthoxide is 

its better protection of the probe by the cross-linked micelle—this was already observed in the 

ANS fluorescence. If the anionic ANS is better shielded by SCM from water exposure (vide 

supra), the neutral 2-naphthol probe should be located in an even more hydrophobic region of 

the nanoparticle and better shielded from water and the hydroxide ions in it. 

According to the hydrolysis of HPNPP (vide infra), the SCM has a stronger surface 

basicity than the CTAB micelle, that is, higher location concentration of hydroxide ions. Most 

likely, two opposing effects were operating on the SCM simultaneously during the photo-

deprotonation of the probe. At pH = 6, the concentration of hydroxide ions in the solution was 

low. The stronger ability of the SCM to concentrate hydroxide ions to the surface is the dominant 

effect, promoting the ESPT of 2-naphthol as a result. With an increase of the solution pH, more 

hydroxide is available, and the difference in surface basicity between the SCM and the CTAB 

micelle becomes less important. Because the probe is more exposed to the solvent in the dynamic 

CTAB micelle, the increasing hydroxide concentration has a larger effect on the ESPT. When the 

probe is solubilized by the SCM, although an even higher concentration of hydroxide ions is 

present on the surface of the cross-linked micelle, the hydroxide has difficulty accessing the 

probe. Also, if a larger population of the probe is located in a hydrophobic microenvironment, 

deprotonation will be more difficult, as the deprotonated species (phenoxide and proton) need to 

be solvated by water. 

It should be mentioned that the slowing down of ESPT by ‘‘hydrophobic shielding’’ of 

the probe has been reported before, although not in covalent systems. Kuzmin and coworkers 

compared the photo-deprotonation of 2-naphthol and 2-naphthol derivatives with long alkyl 

chains. The ESPT of the more hydrophobic probes was found to slow down by 5–8-fold in 
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CTAB micelles. The differences were attributed to the translocation of the hydrophobic 

naphthols into the more nonpolar region of the micelle, where deprotonation is more difficult 

[35]. 

 

Catalysis of the Hydrolysis of HPNPP 

As mentioned earlier, the surface potential of a cationic micelle makes its surface more 

basic than the bulk solution. The surface pH of the CTAB micelle is 9.5 in a neutral aqueous 

solution [39]. One way to investigate the local pH of a micelle surface is through a pH-sensitive 

probe [40–42]. As shown in the studies above, however, the binding properties of the SCM differ 

significantly from those of conventional micelles. Since environmental hydrophobicity, 

microviscosity, and surface potential can all influence the acid–base equilibrium of an indicator, 

we decided to examine the surface basicity of the SCM by a chemical reaction. 

HPNPP is an activated phosphate ester. Its anionic character makes it particularly suitable 

to probe the properties of a cationic micelle. It hydrolysis releases p-nitrophenol, which can be 

easily monitored by UV–Vis spectroscopy. HPNPP is often studied as a model compound for 

RNA hydrolysis. Although the hydrolysis of this and other activated phosphate esters has been 

studied in micelles, metal ions were generally responsible for the rate acceleration [43–45]. Fig. 

5a and b compares the UV–Vis spectra of HPNPP in the presence of the SCMs and CTAB 

micelles over a period of 3 h. A distinctive peak appeared near 400 nm corresponding to p-nitro- 

phenolate for the SCM sample, but that for the CTAB solution was much weaker. The 

absorbance at 400 nm can be fitted into first-order kinetics to give the rate constants for the 

hydrolysis of HPNPP (Table 1). 
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Fig. 6 UV-Vis spectra of an aqueous solution of HPNPP in HEPES buffer over a period of 3 h in 

the presence of (a) SCM and (b) CTAB at 35 °C. [HPNPP] = 0.2 mM. [CTAB] = [cross-linked 

surfactant in SCM] = 1.0 mM.  

 

According to the data in Table 1, both the SCMs and the CTAB micelles were able to 

catalyze the hydrolysis of the activated phosphate ester. The background hydrolysis of HPNPP at 

pH = 7 was too slow to be measured accurately (entry 17). At [surfactant] = 1.0 mM, the SCMs 

and the CTAB micelles accelerated the hydrolysis by 3300 and 230 times, respectively, 

compared to that in the same aqueous buffer (compare entries 9 and 10 with entry 17). One likely 

reason for the accelerated hydrolysis was the above-mentioned higher surface pH of the 

positively charged micelles, whether cross-linked or not [27,46,47]. Another reason could be the 

higher negative charge of the transition state for the hydrolysis in comparison with that of the 

ground state, making the former stabilized relatively to the latter by a polycationic host. 
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Table 1. Rate constants for the hydrolysis of HPNPP in aqueous buffer catalyzed by the SCMs 

and CTAB micelles. 

Entry Micelle [Surfactant] (mM) Solution pH k × 105 (min-1) kSCM/kCTAB 

1 SCM 0.2 7.0 32 1600 

2 CTAB 0.2 7.0 ~0.02a --- 

3 SCM 0.4 7.0 62 77 

4 CTAB 0.4 7.0 0.81 --- 

5 SCM 0.6 7.0 81 35 

6 CTAB 0.6 7.0 2.3 --- 

7 SCM 0.8 7.0 81 18 

8 CTAB 0.8 7.0 2.3 --- 

9 SCM 1.0 7.0 93 14 

10 CTAB 1.0 7.0 5.1 --- 

11 SCM 1.5 7.0 100 11 

12 CTAB 1.5 7.0 7.0 --- 

13 SCM 1.0 7.5 190 9 

14 CTAB 1.0 7.5 22 --- 

15 SCM 1.0 8.0 290 5 

16 CTAB 1.0 8.0 54 --- 

17 none 0 7.0 ~0.03a --- 
a The reaction rate was too slow to be measured accurately. 

 

According to the pseudophase ion exchange model, the observed rate of a chemical 

reaction is determined by the reaction rates of the substrate in solution and in the micelle-bound 

state, as well as the binding equilibrium between the substrate and the micelle pseudophase [27]. 
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In our case, the reactivity in the aqueous pseudophase is negligible at pH = 7 (Table 1, entry 17), 

and thus, the observed reactivity must have come from the micelle-bound substrate. 

Table 1 also shows that the SCMs were consistently more capable of catalyzing the 

HPNPP hydrolysis than the noncovalent CTAB micelles. The results support the stronger surface 

basicity of the former, possibility due to the covalent nature of the SCMs. The surface basicity of 

the cationic micelles derives from the electrical potential of the micelles, whether cross-linked or 

not. As mentioned in the beginning of the paper, the driving force for micellization is the 

hydrophobic interactions among the tails of the surfactants. The electrostatic repulsion between 

the headgroups of the surfactants represents the opposing force. Put in a different way, the 

electrostatic repulsion by itself goes against the formation of the polycationic structure, whose 

electrical potential is responsible for its higher surface basicity. By connecting the cationic 

surfactants with covalent bonds, the cross-linking in a sense ‘‘over-comes’’ the electrostatic 

repulsion that opposes the formation of the polycationic structure. Thus, by weakening the 

opposing force, the cross-linking could enhance the surface basicity of the SCM and facilitate the 

hydrolysis of the SCM-bound HPNPP. Another feature of the SCM is the presence of numerous 

triazole and hydroxyl groups. Although it is possible that these groups could also be helpful to 

the hydrolysis, the first pKa of 1H-1,2,3-triazole is only 1.17 [48]. The weak basicity (and thus 

nucleophilicity) of triazole would make it difficult for it to participate in the catalysis. 

Table 1 also shows that the largest kSCM/kCTAB (=1600) was observed at pH = 7 when the 

concentration of the surfactant was 0.2 mM. The kSCM/kCTAB was found to decrease with 

increasing surfactant concentration. These results are consistent with the lack of CMC for the 

SCM. The CMC of CTAB is 0.9 mM. Below this concentration, the surfactant has limited ability 

to promote HPNPP hydrolysis. In fact, at 0.2 mM of CTAB, the rate constant for the hydrolysis 
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was nearly identical to that of the background reaction (entries 2 and 17). The SCM, however, 

maintains the polycationic structure at all concentrations, thus being able to accelerate the 

hydrolysis at all concentrations. 

The final observation from Table 1 is related to the pH effect. An increase of pH from 7 

to 7.5 to 8.0 was found to increase the rate of HPNPP hydrolysis for both the SCMs and the 

CTAB micelles. The kSCM/kCTAB ratio decreased steadily from 14 to 9 to 5 at the three pHs, 

respectively. The result is not surprising. The increasing hydroxide concentration has a general 

positive effect on the hydrolysis. As the background reaction becomes faster, the catalysis of the 

SCMs and the CTAB micelles becomes less important. 

 

Conclusions 

Cross-linking of a micelle strongly impacts its properties [4–12]. Not only the surfactants 

no longer undergo intermicellar exchange, the cross-linked micelles, as shown by this work, also 

differ from the non-covalent assemblies in profound ways. We have already demonstrated 

several applications for the SCMs including stimuli-sensitive delivery of hydrophobic agents 

[16], controlled release of surfactants [17], as a scaffold for artificial light-harvesting system 

[15], and in aqueous biphasic catalysis [49]. The current study revealed additional features of 

these novel water-soluble nanoparticles. They possess two types of binding sites for the non- 

polar and the polar excited states of the polarity-sensitive ANS probe, respectively. Both binding 

sites shielded the probe better from solvent exposure than the dynamic CTAB micelles. The 

SCMs could inhibit the ESPT of pyranine, possibly due to strong interactions between the probe 

and the oppositely charged SCM. The less polar photoacid (2-napthol) tends to stay in the more 

hydrophobic region of a micelle than pyranine. Notably, the higher surface basicity of the SCMs 
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and their stabilization of an anionic transition state make them capable catalysts in the hydrolysis 

of an activated phosphate ester (HPNPP). Given their easy preparation [13] and numerous 

features, the SCMs should become a versatile platform for chemical and biological applications. 
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CHAPTER 3 

HISTIDINE-FUNCTIONALIZED WATER-SOLUBLE NANOPARTICLES FOR 

BIOMIMETIC NUCLEOPHILIC/GENERAL-BASE CATALYSIS UNDER ACIDIC 

CONDITIONS 

 

A paper published in Organic and Biomolecular Chemistry, 2013, 11, 6849-6855. 

Geetika Chadha and Yan Zhao 

 

Abstract 

Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-

diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded 

surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-

soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding 

sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and 

catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH > 4. 

Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic 

effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized 

SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the 

hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the 

positive nature of the SCMs. 
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Introduction 

Enzymes frequently perform chemical reactions under mild conditions that are difficult 

from a purely synthetic point of view—e.g., amide hydrolysis at physiological pH. The various 

functional groups in the enzyme active site are undoubtedly vital to the catalysis. On the other 

hand, because the active site differs greatly from the bulk aqueous solution where most enzymes 

reside, an enormous “environmental effect” also exists that relates to how differently these 

catalytic groups behave in the unique environment of the active site. For example, acids and 

bases are among the most common catalytic species in organic chemistry but strong acids and 

bases are not available in typical biological reactions. Many enzymes, not surprisingly, have 

developed remarkable capabilities to alter the pKa of the functional groups used in catalysis. In 

acetoacetate decarboxylase, the amino side chain of a lysine in the active site has its pKa shifted 

from 10.6 to 5.6, due to the electrostatic interactions of a proximal ammonium group (which 

repels an incoming proton) [1]. Similar pKa shifts also occur in thiomethyl papain [2], subtilisin 

[3], and ribonuclease [4] for histidine. 

Chemists have long been interested in creating synthetic systems mimicking key 

functions of enzymes, including their abilities to modify the acid/base properties of encapsulated 
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functional groups. Werner Nau et al. demonstrated the pKa shift of cyclohexylmethyl amine by 

ion–dipole interactions with a cucurbit[6]uril host [5]. The same group later showed that 

sulfonated calixarenes could shift the pKa of azoalkane guests and the pKa shifts increased the 

binding affinity of the guests in acidic solution [6]. Raymond and co-workers assembled metal–

organic nanocapsules with a hydrophobic interior and used them to perform acid-catalyzed 

hydrolysis of orthoformates and acetals in basic solution [7]. The seemingly impossible reactions 

were proposed to occur via the stabilization of the positively charged transition states by the 

highly negatively charged nanocapsules. 

Our group recently reported a simple method for covalently capturing micelles of 4-

dodecyloxybenzyltripropargyl-ammonium bromide (1) via the copper-catalyzed azide–alkyne 

cycloaddition (CuAAC) [8]. The click reaction employed in both the cross-linking and post-

functionalization of the micelles ensured unparalleled functional-group-compatibility [9] and 

made the entire synthesis straightforward. Preparation of the final functionalized surface-cross-

linked micelles (SCMs) is accomplished typically in a one-pot reaction at room temperature in 

water. The SCMs are versatile water-soluble nanoparticles with a number of interesting 

properties, including multivalency [8], facile surface-functionalization [8,10], encapsulation of 

hydrophobic guests [11], tunable surface potential [12], membrane permeability [13], and 

controlled release under chemical stimulation [11a,14]. More recently, the SCMs were found to 

have enhanced surface basicity as a result of their polycationic nature [15]. 
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In this work, we decorated the SCMs with histidine derivatives [16]. The resulting 

materials resemble hydrolytic enzymes containing hydrophobic binding sites and catalytic 

functionalities. In both basic and acidic solution, these SCMs catalyzed the hydrolysis of an 

activated ester, presumably by the nucleophilic/general-base catalysis of the imidazole groups. 

Most importantly, the catalytic effect of the imidazole on the SCM surface was more pronounced 

in more acidic solutions, contrary to conventional expectations, which predicts that the imidazole 

groups would be protonated at lower pH and lose their catalytic activity. 

 

Results and Discussion 

Material Design and Synthesis 

Our main objective in this study was to use the SCM as a platform to control the 

acid/base properties of functional groups for enzyme-mimetic catalysis. There are two general 

strategies to shift the pKa of a functional group—hydrophobic interactions [17] and ionic 

interactions [18]. The former exploits the change in solvation when a chemical functionality 

undergoes protonation or deprotonation: because an ionic group is better solvated by polar 

solvents, it is more difficult to protonate an amine or deprotonate a carboxylic acid if the 

resulting ammonium ion or carboxylate is insufficiently solvated in a microenvironment. As 

mentioned earlier, the pKa shift could also occur with specific ionic interactions: vicinal positive 

charges tend to make protonation more difficult and deprotonation easier. 

The SCM should allow us to implement the above two strategies readily. Although water-

soluble, the parent, unmodified SCM is dominated by hydrophobic functionalities [19]. Since the 

SCM of 1 carries numerous positive charges on the surface, protonation of amines attached to the 

SCM should be hindered electrostatically. Imidazole is on the side chain of L-histidine and is 
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commonly involved in hydrolytic enzymes. Its pKa is close to seven, making both protonation of 

imidazole and deprotonation of imidazolium facile under physiological pH, at least in aqueous 

solution. The unprotonated imidazole is a good nucleophile and particularly useful in acyl-

transfer reactions. If its protonation can be successfully altered by the SCM, we should expect an 

unusual catalytic behavior for the attached imidazole groups. 

To construct imidazole–SCMs, we first prepared azide-functionalized L-histidine 

derivative 2. The azide was installed to ensure covalent incorporation of the histidine 

functionality (Scheme 1). The C16 chain was included as a hydrophobic anchor. Because the 

azide is covalently attached to the SCM and the C16 chain needs to stay in the hydrophobic core 

of the SCM, the imidazole group should be close to the surface of the SCM instead of staying in 

the aqueous phase. Both a close distance to the positively charged micelle surface and strong 

environmental hydrophobicity, as mentioned above, should make the protonation of the 

imidazole difficult.  

 

Scheme 1. Preparation of imidazole-functionalized SCM (imidazole-SCM). 
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The CMC of surfactant 1 is 0.14 mM in water [8,11a]. The imidazole–SCMs were 

prepared at [1] = 7.4 mM and [2] = 3.7 mM. The amount of 1,4-diazidobutane-2,3-diol was such 

that the overall ratio of alkyne/azide was ~1 : 1 to maximize the cross-linking density. The SCMs 

were typically characterized by 1H NMR spectroscopy, dynamic light scattering, and FT-IR 

spectroscopy (see Experimental Section for details). The cross-linking chemistry and covalent 

structure of the SCMs have been previously characterized by mass spectrometry (after cleaving 

reversible cross-linkages on the SCMs) and TEM [8]. 

 

Characterization using Fluorescence Probes 

Because the emission of many fluorophores is highly sensitive to their surroundings, they 

can be used to probe the hydrophobicity, acidity/basicity, and other environmental properties in 

their vicinity [20]. Since we are particularly interested in two aspects of the imidazole-

functionalized SCMs (i.e., basicity and local hydrophobicity), we chose to study the SCMs using 

two fluorescent probes—2-naphthol and ANS (1-anilino-naphthalene-8-sulfonic acid, 

ammonium salt). The former is a photoacid with pKa of 9.3 and 2.8 for the ground and the 

excited state, respectively [21]. Its excited-state proton transfer (ESPT) is known to be affected 

by a number of parameters, including local pH, polarity, and the interactions between the probes 

and their surroundings [21b,22]. ANS, on the other hand, is highly sensitive to environmental 

polarity, emitting weakly in water but strongly in a hydrophobic environment [23]. 
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Fig. 1(a–c) shows the emission spectra of 2-naphthol in the presence of imidazole–SCMs, 

SCMs, and micelles of cetyl-trimethylammonium bromide (CTAB) in HEPES buffer at different 

pHs. The CTAB micelles were mostly used as a control to illustrate the effect of covalent 

fixation of the micelles. 2-Naphthol generally gives two emissive peaks at 355 and 420 nm, 

corresponding to the protonated and the deprotonated probe, respectively [21]. If ESPT is slow 

during the lifetime of the excited state, the acidic form at 355 nm will dominate. The faster the 

photo-deprotonation, the stronger the peak at 420 nm will be.  

The emission of 2-naphthol in the different samples supports the local hydrophobicity 

and basicity of the imidazole– SCMs. Unlike 2-naphthol solubilized by the CTAB micelles (Fig. 

1c) that was strongly affected by the solution pH, the probe bound to the SCMs (Fig. 1b) and 

particularly to imidazole–SCMs (Fig. 1a) displayed small to negligible changes at pH 6–8 [24]. 

We believe that the insensitivity of the latter two to pH reflects the better “shielding effect” of 

the cross-linked micelles [15]. A micelle is an assembly of surfactants that constantly exchanges 

surfactants with other micelles. A probe solubilized by a micelle, whether at the water–surfactant 

interface or in the interior of the micelle, is inevitably exposed to the aqueous solution during the 

dynamic assembling and exchanging processes. SCMs, on the other hand, are totally stable, 

covalent structures. When a probe is bound to an SCM, as long as it is located in a relatively 

hydrophobic environment after binding, its emission should reflect the property of the local 

binding site instead of that of the aqueous phase. Given the hydrophobicity of the probe, it is 

most likely located in a fairly hydrophobic region of the nanoparticle [15,25]. To the degree that 

the lack of pH-response in the 2-naphthol emission can be used as a measure for the shielding of 
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the probe from the aqueous solution, the shielding effect followed the order of imidazole–SCMs 

> SCMs > CTAB micelles.  

 

Fig. 1 Emission spectra of 2-napthol in aqueous solutions of (a) imidazole-SCM, (b) SCM, and 

(c) CTAB at pH = 6 (solid line), 7 (dotted line), and 8 (dashed line). [2-napthol] = 0.4 µM. 

[CTAB] = [cross-linked surfactant in the SCMs] = 1.2 mM. λex = 315 nm. (d) Emission spectra 

of ANS in aqueous solutions of HEPES buffer (red line), CTAB (black line), SCMs (blue line), 

and imidazole-SCMs (green line) at pH = 7. [ANS] = 0.4 µM. [CTAB] = [cross-linked surfactant 

in SCM] = [cross-linked surfactant in imidazole-SCMs] = 1.2 mM. λex = 388 nm. 
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Another observation in the fluorescence experiments was the strong ability of the 

imidazole–SCMs to promote photo-deprotonation of 2-naphthol. The deprotonated excited state 

(at 420 nm) dominated in all three pHs, even at pH 6 (Fig. 1a). As discussed above, the probe 

was expected to reside in a hydrophobic region of the cross-linked micelles [15,25]. Because the 

deprotonated species, i.e., the corresponding phenoxide and proton, are better solvated by water, 

photo-deprotonation in a hydrophobic environment is difficult [25]. This point makes the 

dominance of the phenoxide emission in Fig. 1a even more significant, as the probe is known to 

be located in a region not easily accessed by hydroxide ions and difficult for the deprotonation to 

occur. The result also implies that the observed fast ESPT in the imidazole–SCMs should result 

mainly from the attached imidazoles instead of bases located in the aqueous solution [26]. When 

Fig. 1a and 1c are compared, the effect of the imidazoles at pH 6 on the SCMs was comparable 

to that of the hydroxide ions in the CTAB case at pH 8, as far as the ESPT of 2-naphthol was 

concerned.  

The local hydrophobicity of the SCMs was confirmed additionally by the polarity-

sensitive ANS (Fig. 1d). The emission of this probe in HEPES buffer was extremely weak—a 

result of the fast nonradiative relaxation caused by the solvent [23]. Once bound to a CTAB 

micelle, ANS emitted more strongly, as expected from the higher environmental hydrophobicity. 

(It is known from fluorescence quenching that >95% 2-naphthol was bound by the micelles in 

CTAB micellar solution [27].) The emission wavelength of ANS has a strong dependence on the 

solvent polarity [28]. The emission wavelength (λem = 485 nm) of ANS bound to CTAB micelles 

was similar to that in ethylene glycol (λem = 484 nm), suggesting that the probe was located in a 

relatively polar environment of the micelle, possibly near the surface [29]. Note that the same 

concentration of ANS emitted much more strongly in the presence of SCMs and imidazole–



www.manaraa.com

 

 

40 

SCMs and the emission shifted to the blue in comparison to that in the CTAB solution (Fig. 1d). 

Clearly, the probe was in a more hydrophobic environment when bound to the covalently fixed 

micelles. Related to some earlier discussions, if the ionic ANS was located in a hydrophobic 

environment when bound to SCM, it is not surprising that the neutral probe, 2-naphthol, could do 

at least the same. 

 

Catalysis of the Hydrolysis of PNPA 

The fluorescence study gave us confidence that the hydrophobicity and positive charges 

of the SCMs indeed strongly influenced the acid/base properties of the attached imidazoles. We 

then decided to investigate the hydrolysis of PNPA catalyzed by the functionalized SCMs. Fig. 2 

shows the UV-Vis spectra of PNPA in the presence of imidazole–SCMs and SCMs at pH 6 over 

a period of 1 h. The background rate of hydrolysis for PNPA at this pH was negligible (data not 

shown). In the presence of SCMs, a distinctive peak appeared near 400 nm corresponding to p-

nitrophenolate, with the imidazole–SCMs being clearly more potent catalysts than the 

unfunctionalized SCMs.  
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Fig. 2 UV-Vis spectra of an aqueous solution of PNPA in HEPES buffer over a period of 1 h in 

the presence of (a) imidazole-SCMs and (b) SCMs at pH 6 at 35 °C. [PNPA] = 0.2 mM. [cross-

linked surfactant in imidazole-SCMs] = [cross-linked surfactant in SCMs] = 0.4 mM. 

 

The absorbance at 400 nm could be fitted to first-order kinetics to give the rate constants 

of the hydrolysis. Table 1 summarizes all the kinetic data obtained in this study. For comparison 

purposes, we also prepared imidazole*–SCMs from compound 3 and cross-linkable surfactant 1, 

following identical procedures as those for the synthesis of imidazole–SCMs. Our expectation 

was that, without the C16 chain (attached to 3), it should be easier for the imidazole groups on 

the surface of the resulting SCMs to move into the aqueous phase. If local hydrophobicity is 

important to the catalysis of the imidazole groups, imidazole and imidazole*–SCMs should 

behave differently. In addition, we varied the density of the catalytic groups on the micelle 

surface of imidazole*–SCMs, with the relative percentage of the imidazole to surfactant 1 

increased from 25% to 50% to 75%. We used compound 3 for this purpose because its better 

water-solubility enabled us to achieve high surface coverage. The kinetic experiments were 

repeated three times and the errors in the data were generally <5%.  
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According to Table 1, the rate constants increased generally with the solution pH, 

whether for the imidazole-functionalized SCMs, SCMs, CTAB micelles, or other controls 

(imidazole or a physical mixture of imidazole and SCMs). This trend should just reflect the 

higher concentration of the nucleophile (hydroxide) at higher pH. When multiple imidazole 

groups are in close proximity, the imidazole groups sometimes display cooperative catalysis [30] 

(i.e., general acid/general base or nucleophilic catalysis). Such catalysis, however, normally dis- 

plays a maximum near the pKa of imidazole, unlike the monotonous decrease of hydrolysis rate 

with decreasing pH (see more discussions toward the end of the paper) [30b].  

Another consistent trend, observed at all pHs, was the rate of hydrolysis in the order of 

imidazole–SCM > imidazole*–SCM > (imidazole + SCM) > SCM > CTAB [31]. The higher 

catalytic activity of the unfunctionalized SCMs over CTAB micelles originated from the stronger 

surface basicity of the former, as revealed in another study [15]. The imidazole groups were 

clearly helpful, since both imidazole-functionalized SCMs gave faster hydrolysis than the parent 

SCMs. Related to a point made earlier, the hydrolytic rate constants for PNPA in the CTAB 

solution at pH 8 (entry 30) and in the imidazole–SCM solution at pH 6 (entry 13) were 

comparable, similar to what occurred in the ESPT of 2-naphthol with the two systems.  
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Table 1. Rate constants for the hydrolysis of PNPA in aqueous buffer catalyzed by the SCMs 

and CTAB micelles at 35 °C.a 

a Imidazole-SCMs were prepared from compounds 1 and 2; imidazole*-SCMs were prepared 

from compounds 1 and 3. The concentration of the cross-linked surfactant was 0.4 for all the 

SCMs. The concentration of CTAB was 1.2 mM.  The relative percentage of the imidazole to 1 

Entry Micelle Solution pH k × 105 (min-1) k/kSCM 

1 imidazole-SCM 4 20 40c
 

2 imidazole*-SCM 4 10 20c 

3 SCM 4 0.5b 1.0 

4 CTAB 4 --- --- 

5 imidazole-SCM 5 300 15 

6 imidazole*-SCM 5 270 13.5 

7 SCM 5 20 1.0 

8 CTAB 5 ~2b --- 

9 imidazole-SCM 6 740 3.2 

10 imidazole*-SCM 6 580 2.5 

11 SCM 6 230 1.0 

12 CTAB 6 10 --- 

13 imidazole-SCM 7 1870 2.4 

14 imidazole*-SCM 7 1270 1.6 

15 SCM 7 770 1.0 

16 CTAB 7 180 --- 

17 imidazole-SCM 8 5750 3.0 

18 imidazole*-SCM 8 4080 2.1 

19 SCM 8 1930 1.0 

20 CTAB 8 820 --- 

21 imidazole*-SCM 7 2360d --- 

 

 

22 imidazole*-SCM 7 2840e --- 
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was 25% unless otherwise noted. b The reaction rate was too slow to be measured accurately. c 

These ratios were not accurate because the PNPA hydrolysis rate catalyzed by the SCMs was too 

slow to be measured accurately. d The relative percentage of the imidazole to 1 on the SCM 

surface was 50%. e The relative percentage of the imidazole to 1 on the SCM surface was 75%. 

 

Table 1 also gives the relative rates of imidazole–SCMs over those of SCMs (i.e., 

k/kSCM). Because the functionalized SCMs and the parent SCMs had similar structures other than 

the presence of histidine groups, we could treat k/kSCM as an indicator of the catalytic effect of 

imidazole groups on the SCMs. When k/kSCM was plotted against the solution pH, an interesting 

and unusual trend was revealed (Fig. 3a). The ratio was fairly constant at pH 6–8 but increased 

dramatically at pH 4 and 5. This, to us, was the most exciting result in this study. The imidazole 

group of histidine has a pKa of 6.8. At least in water, its catalysis should be more pronounced at 

pHs where there is a substantial population of the un-protonated form (i.e., pH = 7 or 8, see 

Table 1, entries 23 and 29). The fact that k/kSCM was larger at pH = 4 and 5 suggests that a 

substantial population of the imidazole groups was un-protonated on SCMs under these acidic 

conditions, in agreement with the fluorescence study.  
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Fig. 3 (a) Relative rate constants of PNPA hydrolysis catalyzed by imidazole-SCMs (red bars) 

and imidazole*-SCMs (blue bars) over those catalyzed by SCMs. (b) Rate of hydrolysis 

normalized to that at pH 7 for imidazole-SCMs (r), imidazole*-SCMs (£), SCMs (�), and 

CTAB micelles (Í). 

 

It should be also pointed out that the imidazole–SCMs consistently outperformed 

imidazole*–SCMs in catalyzing PNPA hydrolysis at all pHs (Fig. 3a). The result suggests that 

our initial hypothesis was correct. In other words, the C16 chain did serve as a hydrophobic 

anchor for the imidazole groups. When located in a more hydrophobic local environment, 

possibly closer to the positively charged micellar surface, the imidazole groups were more 

resistant toward protonation and thus more effective in the catalysis. What was interesting was 

that the largest “hydrophobic anchoring effect” (i.e., the largest difference between 

imidazole/SCMs and imidazole*–SCMs) was observed at pH 4 (Table 1, entries 1 and 2, also 

Fig. 3a). This observation is consistent with the earlier explanation that the unusual catalysis of 

the imidazole–SCMs originated from hindered protonation of the imidazole groups by the local 

hydrophobicity and positive charges.  

At all pHs, both imidazole–SCMs and imidazole*–SCMs gave faster hydrolysis than the 

physical mixture of imidazole and SCMs (i.e., imidazole + SCM). Thus, covalent attachment 

was better than mere mixtures. In the meantime, our data clearly show that non-covalently bound 

imidazole could work together with SCMs, as the physical mixture worked better than either 

imidazole or SCMs. At lower pHs (pH = 5 and 6), there was some synergism between the two, 

since the rate constant for the mixture was larger than the combined rate constants for imidazole 
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and SCMs (entries 9–11 and 15–17). Presumably, SCMs could bind both imidazole and PNPA, 

facilitating their reaction as a result.  

As mentioned above, hydrolysis slowed down generally as the solution became more 

acidic. It is the slower decrease of the reaction rate in the imidazole–SCMs that is significant. 

The trend can be seen more clearly in Fig. 3b, in which each rate constant for a catalyst was 

normalized to that of the same catalyst at pH 7. According to the normalized rates, in the case of 

CTAB micelles (×), a change of solution pH from 7 to 6 caused a precipitous drop in the 

hydrolysis rate—a result attributed to a decrease of hydroxide concentration on the micellar 

surface. The same was observed for imidazole in solution (see Table 1 for details, data not shown 

in Fig. 3b for clarity). For the SCMs (O), the precipitous drop was “delayed” to pH 5. The result 

was in agreement with our previous finding of the higher surface basicity of SCMs [15]. As 

shown by Fig. 3b, the precipitous drop was delayed even more in the imidazole-functionalized 

SCMs, to pH 4 [32]. These results demonstrate that a systematic fine tuning of surface basicity 

could be easily achieved on the SCM platform by taking advantage of its surface potential, 

covalent structure, and facile functionalization.  
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Fig. 4 Rate constant of the PNPA hydrolysis catalyzed by imidazole*-SCMs as a function of the 

percentage of imidazole with respect to surfactant 1. pH = 7. 

 

A distinct advantage of the SCM is its easy multifunctionalization [8,10]. Because 

imidazole groups sometimes display cooperative catalysis in multifunctionalized systems [30], 

we measured the rate of PNPA hydrolysis as a function of imidazole coverage on the SCM 

surface (Fig. 4). The imidazole*–SCMs were simply prepared by varying the ratio of [3]/[1] in 

the synthesis and the materials were purified in a similar manner. Since the concentration of the 

cross-linked surfactant was kept the same (0.4 mM), the concentration of the imidazole groups 

increased monotonously in the resulting SCMs. The linear relationship between the rate of PNPA 

hydrolysis and the percentage of imidazole on the SCM surface in Fig. 4 indicates that the 

catalytic groups worked individually. It appears that the imidazoles were too far away on these 

SCMs to perform cooperative catalysis. 

 

Conclusions 

This work demonstrates that the SCM could be used as a platform not only for installing 

catalytic groups but also to modulate the chemical reactivity of these groups. For the imidazole- 

functionalized cross-linked micelles, the local hydrophobicity and the positive nature of the SCM 

altered the reactivity of the functionality significantly. The catalytic effect of the attached 

imidazoles, for example, was maintained and became even stronger at lower pHs. This result 

underscores the importance of the environmental effect in catalysis. Chemists traditionally seek 

active catalysts by manipulating the catalytic center (e.g., a transition metal with its first-sphere 

ligands or organic catalytic groups). Environmental effects are now being recognized as another 
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vital factor [33]. Exemplified most elegantly in enzymatic catalysis, the unique 

microenvironment of the catalytic groups can have a profound impact on their behavior and is a 

large contributor to the observed selectivity and/or activity. Enzymes frequently perform 

seemingly impossible reactions under mild conditions. As chemists better understand the 

environmental control of catalysis, we should be able to use these biomimetic strategies to 

achieve transformations that are otherwise difficult. 

 

Experimental Section 

General  

All reagents and solvents were of ACS-certified grade or higher and used as received 

from commercial suppliers. Millipore water was used to prepare buffers and nanoparticles. 1H 

and 13C NMR spectra were recorded on a VARIAN MR-400 or on a BRUKER AV III-600 

spectrometer. Dynamic light scattering (DLS) was performed on a PD2000DLSPLUS dynamic 

light scattering detector. Mass spectrometry was performed on AGILENT 6540 QTOF mass 

spectrometer. Fourier-Transform Infrared (FT-IR) Spectra were recorded on a BRUKER IFS 

66V spectrometer. UV-Vis spectra were recorded on a Cary 100 Bio UV-Visible 

spectrophotometer and fluorescence spectra were recorded on a Varian Cary Eclipse 

Fluorescence spectrophotometer. 

 

Material Synthesis 

The preparation and the characterization of the SCMs were reported previously [8]. A 

typical procedure for the preparation of the imidazole–SCMs is as follows. Compound 2 (0.0068 

mmol), 1,4-diazidobutane-2,3-diol (4.7 mg, 0.027 mmol), CuCl2 (10 µL of a 9 mg mL-1 aqueous 
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solution, 0.5 µmol), and sodium ascorbate (100 µL of a 13 mg mL-1 aqueous solution, 5 µmol) 

were added to a micellar solution of 1 (10 mg, 0.02 mmol) in Millipore water (2.5 mL). The 

reaction mixture was stirred slowly at room temperature for 24 h after which the mixture was 

dialyzed for 3 days against deionized water using 500 Da molecular weight cut-off tubing. The 

characterization of the functionalized-SCMs is reported below.  

 

Fluorescence Study  

A typical procedure for the fluorescence experiment is as follows. Stock solutions of the 

SCM (with a concentration of the cross-linked surfactant of 2.0 mM), ANS (80 µM), and 2-

naphthol (80 µM) in Millipore water were prepared. An aliquot (1.20 mL) of the SCM solution 

was added to a cuvette containing 800 µL of HEPES buffer (25 mM, pH = 7), followed by an 

aliquot (100 µL) of the stock solution of the appropriate dye. After the sample was vortexed 

briefly, the cuvette was placed in the spectrometer and equilibrated to 35.0 °C. The fluorescence 

spectrum was recorded with excitation wavelengths for ANS and 2-naphthol of 388 and 315 nm, 

respectively. The same procedure was repeated for the SCM and CTAB samples. Triplicate data 

were generally collected for each sample. 

 

Kinetic Measurement  

p-Nitrophenyl acetate (PNPA, 50 mg) was dissolved in 10 mL of methanol. The 

methanol stock solution (10 mM) was stored in a refrigerator and used within a week. For the 

kinetic experiments, aliquots of the SCM solution were added to a series of cuvettes containing 

800 µL of HEPES buffer (25 mM, pH = 4, 5, 6, 7, 8). The concentration of the (cross-linked) 

surfactant in the SCM solution was 1.2 mM. The cuvettes were placed in the UV-Vis 
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spectrometer and equilibrated to 35.0 °C. After 5 min, aliquots (40 µL) of the PNPA aqueous 

solution, prepared freshly each day by mixing 3.7 mL of the methanol PNPA stock solution with 

6.3 mL of deionized water, were added to the cuvettes. The hydrolysis was monitored by the 

absorbance of p-nitrophenolate at 400 nm over a period of 66 min. The experiments were 

generally repeated three times for each sample.  

 

Syntheses 

Scheme 2. Synthesis of compound 2  

 

 

Scheme 3. Synthesis of compound 3  
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Compound 4 [34]. Thionyl chloride (11.5 g, 97.1 mmol) was added dropwise to a solution of L-

histidine (1.51 g, 9.71 mmol) in anhydrous MeOH (40 mL) at 0 ºC under nitrogen atmosphere. 

The reaction mixture was heated to refluxed for 16 h and then allowed to cool to room 

temperature. The organic solvent was removed by rotary evaporation to yield a pale yellow solid 

(2.23 g, 95%). 1H NMR (400 MHz, CD3OD, δ): 8.93 (s, 1H), 7.53 (s, 1H), 4.45 (t, J = 6.8 Hz, 

1H), 3.85 (s, 3H), 3.42 (qd, J = 15.7, 6.9 Hz, 2H). 

Compound 5.  N,N-Diisopropylethylamine (DIPEA, 2.80 mL, 16.4 mmol) was added dropwise 

to a solution of compound 4 (1.00 g, 4.13 mmol), palmitic acid (1.06 g, 4.13 mmol), and BOP 

(3.65 g, 8.26 mmol) in anhydrous DMF (5 mL) at 0 ºC. The reaction mixture was warmed to 

room temperature and reacted at 100 ºC in microwave oven (power = 150 watt) for 40 min. After 

allowing to it cool to room temperature, the reaction mixture was poured into 1M HCl (~20 mL) 

over a period of 5 min. A light brown precipitate was obtained upon neutralization of the 

reaction mixture via drop-wise addition of saturated aqueous NaHCO3. The precipitate was 

collected by vacuum filtration and re-dissolved in CHCl3 (20 mL), washed with brine (2 × 20 

mL), dried with sodium sulfate, and concentrated under reduced pressure. The crude mixture was 

further purified by silica gel column chromatography using 1: 10 methanol/CH2Cl2 as eluent to 

afford the pure product as a white solid (1.11 g, 63 %). 1H NMR (400 MHz, CD3OD, δ): 7.56 (s, 

1H), 6.84 (s, 1H), 4.67 – 4.63 (q, 1H), 3.68 (s, 3H), 3.11 – 2.92 (m, 2H), 2.17 (t, J = 7.2 Hz, 2H), 

1.57 – 1.49 (m, 2H), 1.27 (m, 24H), 0.88 (t, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CD3OD, δ) 

176.23, 173.50, 136.30, 53.94, 52.68, 36.71, 33.09, 30.82, 30.81, 30.78, 30.75, 30.64, 30.49, 

30.46, 30.15, 30.08, 26.87, 23.75, 14.46. ESI-HRMS (m/z): [M + H]+, calcd for C23H42N3O3
+, 

408.3221; found 408.3218.    
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Compound 6. Compound 5 (100 mg, 0.25 mmol) obtained in the above procedure was dissolved 

in MeOH (3 mL). A solution of 2 M LiOH (1.00 mL, 1.85 mmol) was added. The reaction was 

monitored by TLC and was complete in 6–10 h. The organic solvent was removed by rotary 

evaporation. The resulting solution was neutralized by drop-wise addition of 2M HCl solution 

(~3 mL). The reaction mixture was concentrated under reduced pressure and the pure product 

was obtained as a pale white solid (0.087 g, 90%). 1H NMR (400 MHz, CD3OD, δ): 8.70 (s, 1H), 

7.28 (s, 1H), 4.64 – 4.61 (q, 1H), 3.11 (m, 1H), 2.22 – 2.15 (m, 2H), 1.51 (t, J = 7.1 Hz, 2H), 

1.24 (m, 24H), 0.85 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CD3OD, δ): 176.10, 172.40, 

134.58, 132.04, 118.09, 54.18, 36.97, 32.97, 30.69, 30.67, 30.65, 30.56, 30.54, 30.39, 30.36, 

30.21, 28.75, 26.80, 23.65, 14.44.   

Compound 7 [35]. Sodium azide (1.58 g, 24.4 mmol) was added to solution of 2-

bromoethanamine hydrobromide (2.00 g, 9.76 mmol) in H2O (12 mL) and the resulting solution 

was stirred for 10 h at 75 ºC. After cooling to room temperature, sodium hydroxide (1.90 g, 45.0 

mmol) was added and stirred for another 5 minutes. The solution was then extracted with ether 

(5 × 15 mL). The collected organic layer was washed with brine (2 × 20 mL), dried with sodium 

sulfate and concentrated by rotary evaporation to give a colorless liquid (0.58 mg, 69%). 1H 

NMR (400 MHz, CDCl3, δ): 3.37 (t, J = 5.7 Hz, 2H), 2.88 (q, J = 5.7 Hz, 2H), 1.45 (bs, 2H). 

Compound 2. N,N-Diisopropylethylamine (DIPEA, 0.46 mL, 2.65 mmol) was added drop-wise 

to a solution of compound 6 (0.21 g, 0.53 mmol), 2-azidoethanamine (0.05 g, 0.53 mmol), BOP 

(0.47 g, 1.06 mmol), and HOBt (0.14 g, 1.06 mmol ) in anhydrous DMF (2 mL) at 0 ºC. The 

reaction mixture was warmed to room temperature and reacted at 100 ºC in microwave oven 

(power = 150 watt) for 40 min. After allowing it to come to room temperature, the reaction 
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mixture was slowly poured into 1M HCl (~20 mL). A sticky light brown precipitate was 

obtained upon neutralization of the reaction mixture via drop-wise addition of saturated aqueous 

NaHCO3. The precipitate was collected by vacuum filtration and then re-dissolved in CHCl3 (20 

mL), washed with brine (2 × 20 mL), dried with sodium sulfate and concentrated under reduced 

pressure. The crude mixture was further purified by silica gel column chromatography using 1: 8 

methanol/CH2Cl2 as eluent to afford a white solid product (1.61 g, 66 %). 1H NMR (600 MHz, 

CD3OD, δ): 7.76 (s, 1H), 6.91 (s, 1H), 4.60 – 4.57 (q, 1H), 3.29 (m, 4H), 3.09 (dd, J = 15.2, 5.9 

Hz, 1H), 2.93 – 2.88 (m, 1H), 2.17 (t, J = 7.9 Hz, 2H), 1.54 – 1.49 (m, 2H), 1.26 (m, 24H), 0.88 

(t, J = 7 Hz, 3H). 13C NMR (150 MHz, CD3OD, δ) 176.27, 173.24, 135.65, 133.11, 118.21, 

54.14, 51.37, 39.91, 36.82, 33.06, 30.78, 30.74, 30.60, 30.45, 30.23, 29.37, 26.77, 23.72, 14.42. 

ESI-HRMS (m/z): [M + H]+ calcd for C24H44N7O2
+, 462.3551; found 462.3549. 

Compound 3. N,N'-Dicyclohexylcarbodiimide (DCC, 2.51 g, 12.4 mmol) was added to a 

solution of 2-azidoacetic acid [36] (1.21 g, 12.4 mmol) and N-hydroxysuccinimide (1.41 g, 12.4 

mmol) in acetonitrile (8 mL) at 0 OC. The reaction was stirred overnight at room temperature, 

under nitrogen. The precipitate formed was removed by suction filtration. The filtrate was 

concentrated by rotary evaporation solid product that was used directly for next step (2.41 g, 

98%). 1H NMR (400 MHz, CDCl3, δ): 4.24 (s, 2H), 2.86 (s, 4H). 

The above-prepared activated ester of 2-azidoacetic acid (0.21 g, 1.11 mmol) and histamine 

(0.75 g, 0.65 mmol) were dissolved in a mixture of anhydrous acetonitrile (3 mL) and methanol 

(1 mL). K2CO3 (0.49 mg, 3.61 mmol) and added to reaction mixture. The solution was stirred 

overnight at 45 ºC. After cooling to room temperature, the reaction mixture was filtered using 

vacuum and the filtrate was concentrated by rotary evaporation. The residue obtained was 
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purified by column chromatography over silica gel using 1: 7 methanol/CH2Cl2 to afford a brown 

solid (0.09 g, 68%). 1H NMR (400 MHz, CDCl3, δ): 7.60 (s, 1H), 6.85 (s, 1H), 3.95 (s, 2H), 3.62 

– 3.56 (q, 2H), 2.83 (t, 2H). 13C NMR (100 MHz, CDCl3, δ) 166.73, 134.86, 52.77, 39.19, 26.85. 

ESI-HRMS (m/z): [M + H]+ calcd for C7H11N6O +, 195.0989; found 195.0990. 

 

DLS Study 

Preparation of DLS sample: 100 µL of the prepared imidazole-SCM solution was taken out 

and diluted to 1 mL by Millipore water. The diluted solution was used as the sample of DLS. 

 

Fig. 5 Distribution of the hydrodynamic diameters of (a) imidazole-SCM and (b) imidazole*-

SCM after MW normalization. MW normalization provides a concentration normalized 

distribution of particles, as large particles scatter much more than small particles even when they 

are present in very small concentration. The MW-normalized size distribution was calculated by 

the PRECISION DECONVOLVE program assuming the intensity of scattering is proportional to 

the mass of the particle squared. 
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1H NMR Study 

 

Fig. 6 Comparison of 1H NMR of imidazole-SCM samples: 1H NMR spectra of a 10 mM 

micellar solution of 1 (a) in D2O, (b) after addition of 25% of surfactant 2, (c) after addition of 1 

equiv. of diazide cross-linker, (d) after cross-linking, and (e) after dialysis to remove water-

soluble impurities. 
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Fig. 7 Comparison of 1H NMR of imidazole*-SCM samples: 1H NMR spectra of a 10 mM 

micellar solution of 1 (a) in D2O, (b) after addition of 25% of ligand 3, (c) after addition of 1 

equiv. of di-azide cross-linker, (d) after cross-linking, and (e) after dialysis to remove water-

soluble impurities.  

FT-IR Study 

Preparation of FT-IR sample: The preparation of Imidazole-SCM was as follows. After 

dialysis (MWCO ca. 6000-8000 Da), the resultant light yellow transparent solution was 

evaporated by a vacuum pump at -58 °C for 2 day. The obtained white solid was subjected to the 

FTIR measurement (KBr pellets). 

 

 

 

 

������������������������������������������	��	��
��
��������������������
�������

�

�

�

�

�

���

���

���

���

���



www.manaraa.com

 

 

57 

(a) 

 
(b) 

 
 

Fig. 8 Infrared spectra of (a) imidazole-SCM and (b) imidazole*-SCM. 
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1H NMR spectrum of compound 4 

 
 

1H NMR spectrum of compound 5 
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13C NMR spectrum of compound 5 

 
 

1H NMR spectrum of compound 6 



www.manaraa.com

 

 

60 

 
 

13C NMR spectrum of compound 6 
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1H NMR spectrum of compound 7 

 
 

1H NMR spectrum of compound 2 

 
 

13C NMR spectrum of compound 2 
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1H NMR spectrum of compound 3 
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13C NMR spectrum of compound 3 
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CHAPTER 4 

ENVIRONMENTAL CONTROL OF NUCLEOPHILIC CATALYSIS IN WATER 

 

A paper published in Chem. Commun., 2014, 50, 2718-2720. 

Geetika Chadha and Yan Zhao 

 

Abstract 

The nucleophilic catalysis by a pyridyl group in ester/phosphate ester hydrolysis was 

modulated by the microenvironmental hydrophobicity around the catalyst. The catalytic 

efficiency was enhanced thousands or tens of thousands of times and the activity was maintained 

well below the pKa of the pyridyl group. 

 

 

Introduction  

In recent years, chemists have increasingly recognized that catalysis is a function of not 

just the catalytic center but also the microenvironment around it [1]. In enzymes, environmental 
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control is achieved through the folding of peptide strands into 3D structures and sometimes 

additionally the aggregation of these folded structures. The folding and aggregation create 

pockets and crevices in the proteins with appropriate binding and catalytic groups for the 

intended function. Since it remains challenging to create precisely folded synthetic tertiary and 

quaternary structures [2], chemists frequently resort to pre-organized scaffolds to achieve 

environmental control of catalysis. Dendrimers [3], star polymers [4], organic and metal–organic 

nanocapsules [5], multifunctional meso-porous materials [6], and metal–organic frameworks [7] 

have emerged as promising candidates for this purpose.  

Our group recently reported a facile method to covalently capture micelles of 4-

dodecyloxybenzyltripropargylammonium bromide (1) [8]. The resulting surface-cross-linked 

micelles (SCMs) are versatile water-soluble nanoparticles with interesting features such as 

multivalency [8], facile surface-functionalization [8,9], encapsulation of hydrophobic guests 

[10], tunable surface potential [11], membrane permeability [12], and controlled release under 

chemical stimulation [10a,13]. More recently, the SCMs were found to have enhanced surface 

basicity as a result of their polycationic nature [14].  

4-Dimethylaminopyridine (DMAP) is a powerful nucleophilic catalyst for transacylation 

[15]. To maintain its nucleophilicity, the pyridyl nitrogen needs to stay deprotonated. This 

requirement can be met easily in an organic solvent by performing transacylation in the presence 

of an appropriate base. If the reaction medium is switched to a neutral aqueous solution, 

however, the pKa (=9.7) [15a] of DMAP poses an immediate challenge for the catalyst to stay 

active.  
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Results and Discussion 

Material Design and Synthesis 

SCM in principle allows us to rationally tune the microenvironment around a covalently 

attached catalytic group. Because surfactant 1 has three alkynes and cross-linker 2 has two 

azides, a stoichiometry of [1]/[2] = 1/1.1 leaves plenty of residual alkyne groups on the surface. 

Subsequent surface-functionalization can be achieved easily by the addition of an azide-

functionalized ligand, hydrophilic [8] or hydrophobic [9]. In this study, an azide-containing 

DMAP analogue 3 (0.2 equiv. to 1) was added after the surface-cross-linking was complete 

(Scheme 1). Our previous study showed that the click surface-functionalization was nearly 

quantitative under our typical reaction conditions, even for bulky polymeric [8] and hydrophobic 

azides [9].  

 

Scheme 1. Preparation of surface-functionalized DMAP-SCM. 

 

Internal functionalization requires significant molecular engineering of the SCM. Inspired 

by our recently reported procedures for molecular imprinting within SCMs [16], we first 

solubilized polymerizable 5, xylene, and DMPA (2,2-dimethoxy-2-phenylacetophenone, a 
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photoinitiator) by the mixed micelles of surfactant 4 and CTAB (Scheme 2). Surface-cross-

linking with di-azide 2 catalyzed by Cu(I), surface-functionalization by azide 6, and free-radical-

core-cross-linking under UV irradiation yielded an internally functionalized SCM (Scheme 2) 

[16]. As reported previously, surface-functionalization by azide 6 decorated the SCMs with a 

layer of hydrophilic groups and was helpful for the solubility of the resulting SCMs in water.  

 

Scheme 2. Preparation of internally functionalized SCM(DMAP). 

 

Both CTAB and xylene were temporary ‘‘space holders’’ in the above SCM and could 

not participate in the cross-linking. Once removed, they left behind channels and voids in the 

SCM that should facilitate mass transfer in the catalysis. This strategy worked well for catalytic 

SCMs with an encapsulated rhodium catalyst in our recent work [10b]. In our hands, the 

previously used 1-dodecanol and other surfactants (e.g., Brij 35) caused precipitation of the 

DMAP-functionalized SCMs. We varied the amounts of CTAB (25–75% to 4) and xylene (2–6 

equiv.) in the preparation and discovered that the materials made with 50% CTAB and 2 equiv. 

xylene had the best water solubility (Experimental Section).  
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Catalysis Studies 

For the catalysis, we first studied the hydrolysis of para-nitrophenyl hexanoate (PNPH) 

and para-nitrophenyl acetate (PNPA) catalyzed by the two functionalized SCMs in HEPES 

aqueous buffers at different pHs. Hydrolysis leads to the formation of para-nitrophenol, which 

can be easily monitored by UV-Vis spectroscopy. The absorbance at 400 nm could be fitted into 

first-order kinetics to give the rate constants for the hydrolysis. The background hydrolysis rates 

were generally insignificant in comparison to those of the catalyzed ones [17].  

 

 

 

Table 1 summarizes the rate constants for the hydrolysis under different conditions. The 

data clearly show that DMAP attached to SCMs were far more efficient catalysts than free 

DMAP in aqueous solution, thousands of times faster at pH 8 and at least tens of thousands of 

times faster at pH 7 (entries 1–6).  

We believe, in addition to the enhanced nucleophilicity at a given pH (vide infra), that the 

SCMs facilitated the hydrolysis by binding the substrate through hydrophobic interactions [17]. 

Evidence for the hydrophobically concentrated substrate comes from the comparison between 

PNPH and PNPA. The more hydrophobic substrate (PNPH) had a reactivity 1/7 of that of PNPA 

in aqueous solution with free DMAP as the catalyst (Table 1, entry 3). However, when catalyzed 

by the DMAP-functionalized SCMs, PNPH became distinctively more reactive by ~2 fold 

(entries 1 and 2).  
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Table 1. Rate constants for the hydrolysis of PNPH and PNPA in aqueous buffer catalyzed by 

the SCMs at 35 °C.a 

a The concentration of the catalytic pyridyl group was 0.10 mM for all the SCMs. [PNPH] = 

[PNPA] = 0.20 mM. The reactions were performed in HEPES buffer.  The relative percentage of 

the pyridyl to the cross-linkable surfactant was 20% for both SCMs. The rate constants were 

measured in duplicates and the error between the two sets of data was generally within 15%. b 

The reaction rate was too slow to be measured accurately.  

 

A more interesting trend was found in the effect of pH on the hydrolysis. The hydrolysis 

slowed down for all three catalysts with decreasing pH, mostly likely as a result of a lower 

concentration of hydroxide in the reaction mixture. The magnitude of this effect of pH, however, 

Entry Micelle Solution pH 
k × 105 (min-1) 

PNPH                         PNPA 

1 DMAP-SCM 8 11400 6410 

2 SCM(DMAP) 8 25800 12740 

3 DMAP 8 10 70 

4 DMAP-SCM 7 3600 2180 

5 SCM(DMAP) 7 23400 5930 

6 DMAP 7 0b 0b
 

7 DMAP-SCM 6 1200 920 

8 SCM(DMAP) 6 11400 2790 

9 DMAP 6 0b 0b 

10 DMAP-SCM 5 500 270 

11 SCM(DMAP) 5 5740 1500 

12 DMAP 5 0b 0b
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was drastically different for the three catalysts. Free DMAP immediately lost all the catalytic 

activity below pH 8 (Table 1, entry 6). Fig. 1 shows a plot of the relative rate constants (krel) 

normalized to the rate constants at pH 8 for each catalyst as a function of solution pH. Since krel 

compares the reactivity of the same substrate catalyzed by the same catalyst at different pHs, the 

hydrophobically enhanced activity cancels out.  

  

Fig. 1 Relative rate constants of hydrolysis of (a) PNPH and (b) PNPA catalyzed by the three 

different DMAP catalysts in HEPES buffers. 

 

As shown in Fig. 1a, for PNPH, the free DMAP catalyst could function only at pH 8, 

most likely because its high pKa (=9.7) [15a] made it protonated at lower pHs. On the other hand, 

the surface- functionalized DMAP-SCM was able to maintain significant activity at pH 7 (ca. 

30% relative to that at pH 8) and pH 6 (ca. 10%), probably because the positive charges on the 

SCM and local hydrophobicity made the pyridyl group more resistant to protonation [17]. The 

internally functionalized SCM(DMAP) was a remarkably competent nucleophilic catalyst under 

acidic conditions. At pH 7, 6, and 5, its activity was 91, 44, and 22% of that at pH 8, respectively 

(Fig. 1a).  
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When the relative rates were plotted for PNPA, similar trends were observed (Fig. 1b). 

Although the internally functionalized SCM(DMAP) remained more resistant to protonation than 

the surface-functionalized ones, the pH resistance was clearly lower than that observed for PNPH 

(compare the blue columns in Fig. 1a and b). In contrast, the pH profiles of DMAP-SCM for 

PNPH and PNPA were largely the same (compare the red columns in Fig. 1a and b). 

Overall, the above results suggest that, for the nucleophilic catalyst to maintain activity 

under acidic conditions, the catalyst should reside in a hydrophobic microenvironment. The most 

likely reason for the environmental hydrophobicity was that a protonated pyridinium cation 

could not be solvated properly in such an environment and thus was more difficult to form [18].  

Why did the pH resistance depend on the hydrophobicity of the substrate? Environmental 

hydrophobicity around the catalyst and a hydrophobic substrate (PNPH) together clearly gave the 

best pH resistance (Fig. 1a, blue columns). One possibility is that the hydrophobic substrate can 

fill the hydrophobic space around the pyridyl group more easily inside SCM(DMAP) than the 

less hydrophobic PNPA. Such binding of the hydrophobic substrate makes it even more difficult 

for the pyridyl nitrogen to be protonated under the reaction conditions, resulting in the observed 

stronger pH resistance. It is also possible that, for an internally functionalized SCM(DMAP), 

multiple pyridyl groups exist in the structure, with some located in more hydrophobic 

environments than others. Those in the more hydrophobic environments should have a stronger 

resistance toward protonation and were the ones chiefly responsible for the residual catalytic 

activity observed at lower pHs.  
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To further confirm the importance of environmental hydrophobicity to the protonation 

resistance, we studied the catalytic hydrolysis of 2-hydroxylpropyl-4-nitrophenyl phosphate 

(HPNPP), an activated phosphate ester. The substrate is a model compound for RNA hydrolysis 

and is much more hydrophilic compared to PNPH and PNPA.  

Table 2. Rate constants for the hydrolysis of HPNPP in aqueous buffer catalyzed by the SCMs at 

35 °C.a 

 
 

 

 

 

 

 

 

 

 

 

a The concentration of the catalytic pyridyl group was 0.10 mM for all the SCMs. [HPNPP] = 

0.20 mM. The reactions were performed in HEPES buffer. The rate constants were measured in 

duplicates and the error between the two sets of data was generally within 15%. b The reaction 

rate was too slow to be measured accurately. 

 

Entry Micelle Solution pH k × 105 (min-1) 

1 DMAP-SCM 8 50 

2 SCM(DMAP) 8 110 

3 DMAP 8 2.4 

4 DMAP-SCM 7 20 

5 SCM(DMAP) 7 40 

6 DMAP 7 0b
 

7 DMAP-SCM 6 3.3 

8 SCM(DMAP) 6 7.5 

9 DMAP 6 0b 

10 DMAP-SCM 5 0b 

11 SCM(DMAP) 5 0b
 

12 DMAP 5 0b
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As shown by the data in Table 2, the phosphate ester was somewhat less reactive than 

PNPH or PNPA when catalyzed by free DMAP in aqueous solution—this should reflect the 

different intrinsic reactivity and generic ability of DMAP to catalyze the reactions. Significantly, 

both SCMs, whether with the DMAP on the surface or in the interior, displayed much lower 

catalytic efficiencies in the phosphate ester hydrolysis than in the ester hydrolysis. The reaction 

rates only increased by 20–50-fold in the former (Table 2, entries 1–3) instead of thousands or 

tens of thousands of times as observed in the ester hydrolysis (Table 1, entries 1–6). Clearly, 

with the less hydrophilic substrate, the enhancement in catalytic activity was much lower for the 

same catalytic group. As seen in Fig. 2, both DMAP-functionalized SCMs lost their catalytic 

activity nearly completely at pH 6.  

 

 

Fig. 2 Relative rate constants of hydrolysis of HPNPP catalyzed by the three different DMAP 

catalysts.  
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Conclusion 

In summary, this work has shown that unconventional catalysis—i.e., nucleophilic 

catalysis under acidic conditions that typically protonate/deactivate the catalyst—can be 

rationally engineered through controlling the microenvironment around the catalyst. Not only so, 

the nature of the substrate itself is important for the observed environmentally enhanced 

catalysis. The interdependency of the environmentally enhanced catalysis and the substrate 

highlights the importance of the environment to a particular catalytic reaction. Chemists have 

just begun to use rational environmental control to modulate the activity and selectivity of 

catalysts [1]. It is not difficult to imagine that, with more sophisticated control of the 

microenvironment around the catalyst; extraordinary activity and selectivity can be obtained, as 

demonstrated elegantly by enzymatic catalysts with just 20 amino acids and readily available 

metal ions.  
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Experimental Section 

General Experimental Methods 

All reagents and solvents were of ACS-certified grade or higher and used as received from 

commercial suppliers. Millipore water was used to prepare buffers and nanoparticles. 1H and 13C 

NMR spectra were recorded on a VARIAN MR-400 or on a VARIAN VXR-400 spectrometer. 

Dynamic light scattering (DLS) was performed on a PD2000DLSPLUS dynamic light scattering 
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detector. Mass spectrometry was performed on AGILENT 6540 QTOF mass spectrometer. UV-

Vis spectra were recorded on a Cary 100 Bio UV-Visible spectrophotometer. 

 

Syntheses 

Syntheses of compounds 1 [19], 2 [19], 4 [20], and 6 [20] were previously reported. 

Scheme 3. Synthesis of compound 3 

 

Scheme 4. Synthesis of compound 5 

 

Compound 7 [19]. A mixture of 4-chloropyridine hydrochloride (0.25 g, 1.70 mmol), N, N-

dimethyl-1,2-ethanediamine (0.46 mL, 4.25 mmol), and sodium bicarbonate (0.43 mg, 5.10 

mmol) in isoamyl alcohol (50 mL) was heated to reflux for 48 h. The mixture was concentrated 

by rotary evaporation and the residue was purified by column chromatography over silica gel 

using CH2Cl2/CH3OH (5: 1) and CH3OH/TEA (4: 0.5) as the eluents to give a yellowish oil (0.20 

g, 71%). 1H NMR (400 MHz, CDCl3, δ) 8.18 (dd, 2H), 6.51 (dd, 2H), 3.44 (t, 2H), 2.98 (s, 3H), 

2.77 (t, 2H), 2.44 (s, 3H). 
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Compound 3. A solution of compound 7 (0.08 g, 0.48 mmol), azidoacetic acid N-

hydroxysccinimide ester [21] (0.192 g, 0.96 mmol), and K2CO3 (0.40 g, 2.88 mmol) in 

acetonitrile (5 mL) was stirred for 2 d under nitrogen. The solid was removed by filtration. The 

filtrate was concentrated in vacuo to give a yellow oil, which was purified by preparative TLC 

using 3:1 CH2Cl2/CH3OH as the developing solvent to afford a white powder (90 mg, 75%). 1H 

NMR (400 MHz, CDCl3, δ) 8.31 (d, 2H), 6.79 (d, 2H), 3.86 (s, 2H), 3.70 (t, 2H), 3.60 (t, 2H), 

3.17 (s, 3H), 2.99 (s, 3H). 13C NMR (100 MHz, CDCl3, δ): 167.8, 153.4, 149.9, 106.4, 50.5, 

48.1, 46.1, 37.4, 35.9. [M + H]+ calcd for C11H16N6O, 249.1458 found, 249.1460. 

Compound 5 [22]. NaH (0.05 g, 60 % in mineral oil, 1.38 mmol) was added to a solution of 4- 

(methylamino)pyridine (0.10 g, 0.92 mmol) in dry THF (5 mL) at 0 oC under nitrogen. The 

mixture was stirred at room temperature for 2 h and cooled to 0 oC again, followed by slow 

addition of 4-vinyl benzyl chloride (0.09 mL, 0.64 mmol) in dry THF (2 mL). The reaction 

mixture was allowed to warm to room temperature and was stirred for 24 h. The insoluble solid 

was removed by filtration and the filtrate was concentrated in vacuo. The residue was dissolved 

in CH2Cl2 (50 mL). The organic solution was washed with water (2 × 30 mL), dried with 

anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column 

chromatography over silica gel with CH2Cl2/MeOH = 10/1 to 5/1 as the eluents to give a light 

brown powder. (0.18 g, 89%) 1H NMR (400 MHz, CDCl3,  δ): 8.20 (d, 2H), 7.36 (d, 2H), 7.11 

(d, 2H), 6.71 (dd, 1H), 6.54 (dd, 2H), 5.73 (d, 1H), 5.23 (d, 1H), 4.50 (s, 2H), 3.07 (s, 3H). 13C 

NMR (100 MHz, CDCl3, δ): 154.0, 149.4, 136.8, 136.5, 136.2, 126.6, 126.6, 113.9, 106.7, 54.8, 

37.8. 
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Preparation of DMAP-SCM. Compound 3 (1.7 mg, 0.0068 mmol), 1,4-diazidobutane-2,3-diol 

(compound 2, 4.6 mg, 0.026 mmol), CuCl2 (10 µL of a 9 mg/mL aqueous solution, 0.5 µmol), 

and sodium ascorbate (100 µL of a 13 mg/mL aqueous solution, 5 µmol) were added to a 

micellar solution of  compound 1 (10 mg, 0.02 mmol) in Millipore water (2.5 mL). The reaction 

mixture was stirred slowly at room temperature for 24 h after which the mixture was dialyzed for 

3 d against deionized water using 500 Da molecular weight cut-off tubing. The detailed 

preparation, cross-linking chemistry, and characterization of the SCMs were reported previously 

[19,20,24,25]. 

Preparation of SCM(DMAP). To a micellar solution of compound 4 (20 mg, 0.047 mmol) in 

D2O (2.0 mL), cetyltrimethylammonium bromide (CTAB, 8.6 mg, 0.024 mmol), xylene (12 µL, 

0.094 mmol), compound 5 in DMF (35 µL of a solution of 60 mg/mL, 0.0096 mmol), and 2,2-

dimethoxy-2-phenylacetophenone (DMPA, 6 µL of a 55 mg/mL solution in DMSO, 0.0012 

mmol) were added. The mixture was subjected to ultrasonication for 10 min before compound 2 

(8.89 mg, 0.052 mmol), CuCl2 (10 µL of a 16 mg/mL solution in D2O, 0.0012 mmol), and 

sodium ascorbate (100 µL of a 23 mg/mL solution in D2O, 0.012 mmol) were added. After the 

reaction mixture was stirred slowly at room temperature for 12 h, compound 6 (26 mg, 0.094 

mmol), CuCl2 (10 µL of a 16 mg/mL solution in D2O, 0.0012 mmol), and sodium ascorbate (100 

µL of a 23 mg/mL solution in D2O, 0.012 mmol) were added. After being stirred for another 6 h 

at room temperature, the reaction mixture was transferred to a glass vial, purged with nitrogen 

for 15 min, sealed with a rubber stopper, and irradiated in a Rayonet reactor for 12 h. The 

reaction mixture was poured into acetone (8 mL). The precipitate was collected by centrifugation 
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and washed with a mixture of acetone/water (5 mL/1 mL) five times. The off-white powder was 

re-dissolved in 2.4 mL of Millipore water to give a 20 mM stock solution of SCM(DMAP). 

Kinetic measurement  

p-Nitrophenyl acetate (PNPA, 50 mg) was dissolved in 10 mL of methanol. The 

methanol stock solution (10 mM) was stored in a refrigerator and used within a week. p-

Nitrophenyl hexanoate stock solution (PNPH, 12 mg/5mL in acetonitrile, 10 mM) was prepared 

freshly each day.  HPNPP was prepared according to a literature procedure [26]. A stock solution 

(10 mM) of HPNPP in Millipore water was prepared. For the kinetic experiments, a typical 

procedure is as follows: Aliquots of the SCM(DMAP) solution were added to a series of cuvettes 

containing 800 µL of HEPES buffer (25 mM, pH = 4, 5, 6, 7, 8). The concentration of the 

catalytic pyridyl group was 0.10 mM in all cases. The cuvettes were placed in the UV-Vis 

spectrometer and equilibrated to 35.0 °C. After 5 min, aliquots (40 µL) of the PNPA aqueous 

solution, prepared freshly each day by mixing 3.7 mL of the methanol PNPA stock solution with 

6.3 mL of deionized water, were added to the cuvettes. The hydrolysis was monitored by the 

absorbance of p-nitrophenol at 400 nm over a period of 6 min for PNPA, 1–4 min for PNPH, and 

3 h for HPNPP. The experiments were generally performed in duplicates.  
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Fig. 3 Distribution of the molecular weights of the SCM(DMAP) and the correlation curve for 

DLS. The molecular weight distribution was calculated by the PRECISION DECONVOLVE 

program assuming the intensity of scattering is proportional to the mass of the particle squared. 

 

 

Fig. 4 Distribution of the hydrodynamic diameters of the nanoparticles in water as determined by 

DLS for (a) alkynyl-SCM (b) surface-functionalized SCM, and (c) SCM(DMAP) after 

purification. 
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Fig. 5 1H NMR spectra of (a) 10 mM micellar solution of 1 in D2O, (b) after the addition of 0.2 

equiv. of compound 3, (c) after surface-crosslinking, and (d) purified DMAP-SCM in D2O. 

�����������	
���������
�������

�

�

�

�

(a)$

(b)$

(c)$

(d)$



www.manaraa.com

 

 

85 

 

Fig. 6 1H NMR spectra of (a) 10 mM micellar solution of 4 in D2O, (b) after surface-crosslinking 

(12 h after the addition of compound 5, compound 2, xylene, CTAB, DMPA, and Cu(I) 

catalysts), (c) after surface-functionalization with compound 6, (d) after core-cross-linking (after 

12 h under UV irradiation), and (e) purified SCM(DMAP) in D2O. 

1H and 13C NMR spectra of key compounds 
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CHAPTER 5 

SELF-ASSEMBLED LIGHT HARVESTING NANOPATICULATE MATERIALS FOR 

LONG-RANGE ENERGY TRANSFER IN AQUEOUS SOLUTION 

 

A manuscript to be submitted 

Geetika Chadha and Yan Zhao 

 

Abstract  

 A robust light harvesting system was constructed using a dansyl labeled surfactant and by 

introducing eosin Y through electrostatic interaction. Magnified ‘Antenna Effect’ observed due 

to both intra-micellar and inter-micellar energy-transfer processes, was facilitated by extremely 

high binding constants between the acceptor and the donor units, as well as the close distance 

between the donor chromophores. The light energy absorbed by the dansyl groups within the 

cross-linked micelles was transferred, with high quantum efficiency to Eosin Y/ calcein/ SR101 

that served a dual function of an energy sink and a non-covalent cross-linker. 

 

Introduction  

Conversion of light energy to chemical or electrical potential is the fundamental process 

behind important processes including photosynthesis [1], photocatalysis [2], and photovoltaics 

[3,4]. Nature has optimized the materials needed for both light harvesting and conversion.  Some 

natural light-harvesting complexes, for example, consist of >200 antenna chromophores to 

absorb light energy, with efficient energy-migration from one chromophore to another before the 
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energy is funneled to a reaction center [5]. The efficiency of these light-harvesting complexes 

approaches that of a nearly perfect “Einstein photochemical machine,” [5b] making them 

outstanding models for chemists and materials scientists to mimic. Unfortunately, the highly 

complex protein framework used to organize the light-absorbing dyes in the natural systems is 

not only too difficult to synthesize but also too expensive and fragile for most technological 

applications. 

Previously, we reported a strategy to create light-harvesting nanoparticles from our 

multivalent surface-cross-linked micelles (SCMs) [6]. The SCMs are synthesized by cross-

linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide (1) [7] and are 

versatile multifunctional water-soluble nanoparticles useful in molecular recognition [8], 

encapsulation, controlled release [9], catalysis [10], and imaging [11]. Since SCMs typically 

have multiple alkyne groups on the surface; their multifunctionalization is straightforward [7]. In 

our previous light-harvesting SCMs, antenna chromophores, i.e., 9,10-bis(4-

methylphenyl)anthracene (DPA), were installed by a click reaction between an azido derivative 

of DPA and alkyne-functionalized SCMs in a THF/water mixture [6]. Because the DPA groups 

in the resulting light-harvesting SCM were close enough for efficient energy migration and yet 

far enough to avoid excimer formation or self-quenching, facile light-harvesting effect was 

observed in the DPA-functionalized SCM, in the organic medium (i.e. THF). One acceptor 

molecule (Eosin Y or EY), for example, was found to quench the emission of ca. 50 molecules of 

the DPA donor on the SCM, when the negatively charged EY bound to the positively charged 

SCM through electrostatic interactions. The energy-transfer distance between the donor and the 

acceptor in such a scenario far exceeded the Förster distance (R0) of DPA and EY, and could 

only be possible via a combined DPA–DPA energy migration and DPA–EY energy transfer [6]. 
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In this work, we sought to further increase the antenna effect and hoped to further 

increase the number of donor chromophores that could be quenched by an acceptor. Our key 

strategy was to utilize a fluorescent cross-linkable surfactant 2, which has the same 

tripropargylammonium headgroup as 1 and a dansyl-like fluorophore in the structure. Its 

synthesis is discussed in detail in the Experimental Section. 

 

Results and Discussion 

Material Design and Synthesis 

Surfactant 1 has a critical micelle concentration (CMC) of 0.14 mM [9a]. According to 

the fluorescence studies (see Experimental Section for details), the CMC of 2 is ca. 0.3 mM in 

water. In our SCM preparation, we kept the total concentrations of the surfactants at 10 mM 

while varying the ratio between 1 and 2 from 80:20 all the way to 0:100. The idea was to vary 

the density of the fluorophore in the SCM so that we could minimize self-quenching or at least 

keep it under a manageable level. In the presence of the di-azide crosslinker 3 [7], Cu(I) 

catalyzed 1,3-dipolar cycloaddition was performed to capture the micelle, leading to the 

formation of water soluble nanoparticles with different densities of fluorophore units on the 

surfaces; known as dansyl-SCMs (Scheme 1). 
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Scheme 1. Preparation of dansyl-SCM. 

 According to Fig. 1, the emission spectra of surfactant 2 showed a significant blue shift at 

CMC. This suggests that micellization brings the fluorophore units in close proximity of each 

other [12,13]. The common observation encountered in bringing fluorophores together is self-

quenching and/or excimer formation, which in turn reduced overall energy transfer efficiency 

[14,15]. For our system, small amount of decrease in the quantum efficiency was observed upon 

comparing the quantum yield of the free surfactant 2 with different sets of dansyl-SCMs (Table 

1, entry 6 with entry 1–5). We believe that crosslinking the micelles will lead to hydrophobicity-

enhanced emission, which is responsible for increase in the quantum yield but at the same time 

crowding the chromophores in a rigid space will also reduce the quantum yield due to self-

quenching. For SCMs, both these reasons are contributing to the overall observed quantum yield. 

The average size of the dansyl-SCMs (Set 1–5) ranged from ca. 4 – 7 nm.  

   
Fig. 1 (a) Emission spectra (solid lines on right) at λex = 343 nm and excitation spectra (broken 

lines on left) at λem = 490 nm (with λmax = 330 nm) for; dansyl-SCM–Set 5 (blue, 0.007 mM), 

surfactant 2 (red, 0.007 mM) and surfactant 2 (green, 0.30 mM); (b) absorbance spectra of 

dansyl-SCM [0.3 mM] (λmax = 340 nm) and EY [0.010mM] (λmax = 520 nm); in Milli-pore water. 

 

0"

150"

300"

450"

600"

750"

270" 345" 420" 495" 570" 645" 720"

 In
te

ns
ity

 (a
.u

.) 

λ  (nm) 

0"

0.2"

0.4"

0.6"

0.8"

1"

250" 325" 400" 475" 550"

A
bs

or
ba

nc
e 

 

λ  (nm) 

Set 1 
Set 2 
Set 3 
Set 4 
Set 5 
EY 



www.manaraa.com

 

 

95 

Table 1. Characterization of dansyl-SCM prepared from 1 and 2.a 

Entry [1]/[2] DLS Diameter (nm) QY (%)b 

1 80:20 3.7 17 
2 60:40 4.3 10 
3 40:60 6.7 8.3 
4 20:80 6.2 7.2 
5 0:100 5.3 5.3 

 
6  0:100a --- 19a 

a Quantum yield of the free surfactant 2 (2% in water, 10% in 1:1 v/v water/MeOH and 19% 

in MeOH). b Quantum yields were determined using quinine sulfate in 0.05 M H2SO4 as a 

standard, by the excitation at 343 nm. The quantum yields were calculated according to 

equation Φ = ΦS×I/IS×ODS/OD×η2/ηS
2, in which Φ is the quantum yield, ΦS = 0.577 for 

quinine sulfate, I is the integrated intensity, η is the refractive index (η2 = ηS
2 as water was 

used for both system), OD is the optical density. The subscript S refers to the standard.  

 

After evaluating the efficient overlap between the emission spectra of donor (dansyl-

SCM) and excitation spectra of acceptor (see Experimental Section for details), our first 

choice was to test Eosin Y (EY) disodium salt as the energy acceptor for studying energy 

transfer. We titrated a solution of dansyl-SCM (Set 5) in Millipore water with EY.  

With the addition of EY to aqueous solution of dansyl–SCMs, the donor emission at 

490 nm was observed to decrease upon selective donor excitation at 343 nm (Fig. 2a). 

Importantly, irradiation of EY at 343 nm in the absence of dansyl-SCM gave negligible 

emission. This data indicated that a small amount of EY [4.34 µM] had the ability to 
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completely quench the emission intensity of our donor system, which is evidence for 

effective Förster energy transfer from dansyl-SCM to EY. Based on our previous findings 

[6], this result was expected as the electrostatic interaction between the negatively charged 

EY and positively charged dansyl-SCM causes spontaneous assembly of the acceptor 

molecule (EY) onto the surface of the nanoparticle. The resulting quenching data hence 

obtained was fitted into the 1:1 binding isotherm to generate association constant Ka = (0.50 

± 0.02) × 108 M-1 and the (dansyl)n concentration C0 = (1.4 ± 0.2) × 10-8 M, by using a 

nonlinear least-squares curve fitting  (Fig. 2b).  Table 2 displays the association constant 

values for all the sets having different fluorophore ratios for dansyl-SCM (entry 1–5). 

 

Fig. 2 (a) Fluorescence spectra of dansyl-SCM (Set 5 = 7 µM in Millipore water) in the 

presence of different concentrations of EY. The concentrations of EY was 0.00, 0.88, 1.59, 

2.40, 3.47, 4.34, 5.73, 7.19, 8.52, 9.97 µM from top to bottom. (b) The nonlinear least-

squares analysis of IF for Set 5 versus the concentration of EY.  
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Table 2. Quenching of dansyl-SCM by EY.a 

Entry [1]/[2] Ka (× 108 M-1) C0 (× 10-8 M) n x 

1 80:20 1.2 ± 0.1 4.4 ± 0.4 9 1 

2 60:40 1.2 ± 0.1 4.7 ± 0.3 34 1 

3 40:60 0.89 ± 0.04 1.3 ± 0.2 80 2 

4 20:80 0.91 ± 0.03 2.4 ± 0.1 130 3 

5 0:100 0.50 ± 0.02 1.4 ± 0.2 510 9 

6 0:100b 1.3 ± 0.1 --e --e --e 

7 0:100c 1.4 ± 0.2 --e --e --e 

8 0:100d 

 

2.5 ± 0.2 --e --e --e 
 
 9 0:100f 

 

9.1 ± 0.1 6.8 ± 0.2 730 12 
 a Nonlinear least-squares fittings of IF versus the EY concentration were performed using 

equation IF=I0+((Ilim-I0)/(2*C0))*(C0+CEY+(1/Ka)-((C0+CEY+(1/Ka))^2-4*CEY*C0)^(1/2)), in 

which IF was the observed emission intensity of dansyl-SCM, I0 the emission intensity of dansyl-

SCMs in the absence of EY, Ilim the emission intensity of the fully complexed dansyl-SCM 

(assumed to be zero in the curve fitting), C0 the concentration of (dansyl)n, and CEY the 

concentration of EY. Ka = association constant, n = number of the dansyl fluorophores (= 

surfactant 2) per light harvesting unit, x = number of dansyl-SCM units quenched per EY (Set 1 

= 23/(0.2×60), Set 2 = 43/(0.4×60), Set 3 = 238/(0.6×60), Set 4 = 166/(0.8×60), Set 5 = 

364/(1×60)). b The titration was performed with 0.4 µM of sodium phosphate in the solution. c 

The titration was performed with 0.4 µM of 1,3,5-benzenetricarboxylate in the solution. d The 

titration was performed with ~ 0.4 µM of polyacrylic acid, sodium salt in the solution. e The error 

on C0 in the curve-fitting was too large to be reliable. f The titration was performed with calcein. 
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We used the absorption spectra to calculate the concentration of the fluorophore 

(dansyl units) in the solution [16] based on which the number of dansyl fluorophore involved 

in the light-harvesting unit was calculated: n = 510 for Set 5 [6, Table 2]. To our surprise this 

number was 10 times higher than our previous finding––DPA functionalized light-harvesting 

SCMs [6]. The n value, which is indicative of the number of fluorophores effectively 

quenched by one EY molecule, presently far exceeded the aggregation number of the 

surfactant in SCM i.e. ~ 50–60 [see Table 3]. These results suggested that, in current 

scenario, the energy migration pathway involved association of multiple fluorophores from 

different units and not just one light harvesting dansyl-SCM unit. This number was observed 

to be the highest for Set 5, which is expected as it has the largest population of dansyl 

chromophore per unit. The n value was similarly calculated for other sets (entry 1–4), thereby 

displaying efficient participation of 9, 34, 80 and 130 fluorophores in the energy migration 

process for Set 1, Set 2, Set 3 and Set 4, respectively. Another evidence for the aggregation 

among the donor systems comes from DLS studies. Table 3 displays increase in size of Set 5 

from ca. 4 nm to ca. 30 nm upon titration with EY. We also monitored the change in the 

molecular weight for donor system (also studied for Set 1 to 4) upon EY addition, which 

displayed a consistent increase in their respective sizes. This helped us to calculate the 

aggregation number of our donor system that amounts to ca. 60.   
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Table 3: Displaying the distribution of molecular weight and hydrodynamic diameter of dansyl-

SCM (Set 5) 

Set 5  EY [µM] Diameter Molecular 
weight [KDa] 

x’ 

1 0 4 nm 5.8 x 101 --- 

2 0.02 31 nm 3.7 x 103 63 

3 0.04 25 nm 2.8 x 103 48 

4 0.08 27 nm 3.4 x 103 59 

5 0.12 34 nm 4.2 x 103 72 

6 0.17 28 nm 2.3 x 103 39 

x’ = Aggregation number of dansyl-SCM units on EY titration  

 

 We used these n values to calculate x–the number of light harvesting units of dansyl-SCM 

involved in energy transfer. Based on the number of fluorophoes in each of these different sets 

[11], we calculated x = 1, 1, 2, 3, 9 for Set 1 to 5, respectively. To our surprise, we found that 9 

units of dansyl-SCM (for Set 5) participated in energy-migration-assisted energy transfer 

pathway. This result suggested that the electrostatic attraction through EY was strong enough to 

overcome the energy barrier of bringing multiple poly-cationic nanoparticles in close proximity 

of each other, thereby facilitating the association of multiple units together and resulting in a 

magnified antenna effect. To our benefit, EY was serving a dual purpose–acting as an energy-

sink and also a binder due to its anionic nature [17,18]. This means that no matter which dansyl-

SCM unit absorbs light, energy migration occurs readily from donor to donor; via both inter– 

(that is, within the same micelle) and intra–unit (among other micelles) migration and finally to 

the acceptor, as shown in Scheme 2 [19]. For control experiment, we tested the fluorescence 



www.manaraa.com

 

 

100 

resonance energy transfer (FRET) efficiency in presence of SCM, i.e. the non-chromophoric 

counterpart of cross-linked micelle. Our data (see Experimental Section for details) reflects that 

the presence of dansyl chromophore is crucial for the energy migration. All fluorescence studies 

were repeated at least three times. No significant difference was observed and the errors in the 

data were generally <5%. 

 

 

Scheme 2. Pathway involved in light harvesting system for dansyl-SCM in presence of EY 

behaving as a binder and as an energy acceptor. 

 

We were interested in looking into whether or not the bulky, di-anionic energy acceptor 

EY was capable of using its own charge to its advantage. For this study, we decide to use 

external additives. The idea was to add to a solution of dansyl-SCM an anionic molecule in an 

amount that would start the initial aggregation. In the presence of these anionic additives, the 

fluorophores are brought to the close proximity of one another to further facilitate energy 

migration [20]. We then titrated this solution with EY and monitored the decrease of emission 
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peak at 490 nm. For our study we used sodium phosphate (Fig. 3a), 1,3,5-benzenetricarboxylate 

(Fig. 3b), and polyacrylic acid sodium salt (Fig. 3c) as anionic additives.  

A consistent trend for all three cases was observed where for any given amount of EY, 

the quenching of emission intensity for the donor system was significantly more in the presence 

of external additive than where the additive was absent. We used nonlinear least-squares curve 

fitting to calculate association constant (Ka) for these three sets (Table 2, entry 6–8). Our data 

suggested that the addition of these external anionic cross-linkers, significantly increased the 

association constant by ~ 3 (for sodium phosphate), ~ 3 (for 1,3,5-benzenetricarboxylate), and ~ 

5 (for polyacrylic acid sodium salt) times, which in-turn lead to an enhancement in their antenna 

effect (compare entries 6, 7 and 10, respectively, with entry 5). These results further support our 

reasoning that anionic charge (energy acceptor EY) initiates aggregation. 

 

Fig. 3 Relative nonlinear least-squares analysis of dansyl-SCM with EY, (☐) without additive 

and (Δ) with additive, in Millipore water. 

 

Another evidence supporting the formation of dansyl-SCM aggregates comes from DLS 

study where it was observed that the hydrodynamic diameter of Set 5 is sharply increased from 
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ca. 5 nm to 294 nm on polyacrylic acid, sodium salt [0.4 µM] addition (see Experimental Section 

for details). The overall size stayed consistent upon successive addition of energy acceptor-EY. 

Similar increase in size was observed in case of 1,3,5-benzenetricarboxylate and sodium 

phosphate. 

 

In order to study the effect of increased magnitude of electrostatic attraction, we decided 

to titrate dansyl-SCM with another energy acceptor–calcien (see Experimental Section for 

details). Compared to EY, calcein has 4 more units of anionic charge. We hypothesized that an 

increase in the anionic character with calcein should facilitate higher degree of association 

among the fluorophores and hence, encourage higher energy migration. Table 2, entry 9 suggests 

that our hypothesis holds true––displaying 18 times higher binding ability (i.e., KCalcein/KEY) in 

presence of calcein as an energy acceptor and binder. The data suggests that calcein was able to 

effectively channel energy among 730 fluorophores (n value) by bringing 12 dansyl-SCM units 

(x value) in close proximity. This impressively large numbers highlight enhanced antenna effect 

in our nanoparticulate material. The proof of aggregation was also monitored by DLS for all the 

sets. 

Although calcein excellently served our purpose of a poly-anionic energy acceptor, due 

to its strong overlap with donor’s emission (i.e., dansyl-SCMs), we encountered difficulty in its 

peak separation. To address this problem, we decided to use a red-shifted dye––Sulforhodamine 
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101 (or SR101) which would also act as a secondary energy acceptor. SR101 was carefully 

chosen because of its effective spectral overlapping (see Experimental Section for details). This 

triple-dye-system was designed such that dansyl served as a common donor for EY and SR101, 

while EY acted both as an energy acceptor for dansyl group and as a donor for SR101. The idea 

was to investigate the pathway of from energy being captured by the multiple dansyl 

chromophoric units on the SCM surfaces, transferred to EY and then eventually funneled to 

SR101. 

  

Fig. 4 Fluorescence spectra of (a) dansyl-SCM (Set 5 = 7 µM) and (b) control-SCM [7 µM], both 

in the presence of EY [0.2 µM] titrated with different concentrations of SR101 (0.00, 0.020, 

0.043, 0.083, 0.125, 0.168, 0.210, 0.250, 0.293, 0.343, 0.406 µM from bottom to top), upon 

selective excitation of donor at 343 nm. 

 

To test whether energy transfer could take place within these multiple fluorophores, we 

prepared three different solutions with same concentration of donor dansyl-SCM but with 

varying amount of EY added. Set I with EY = 0.08 µM–concentration required to initiate donor 

emission quenching, Set II with EY = 0.2 µM–concentration required to completely quench 
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donor emission [Fig. 4a] and Set III with EY = 0.4 µM–excess concentration after complete 

quenching donor emission. Addition of EY lead to quenching of the donor emission at 490 nm 

with formation of acceptor-EY emission at 543 nm. These sets were then titrated with SR101 and 

all of them consistently displayed efficient FRET––starting from donor dansyl to acceptor EY 

followed by EY to acceptor SR101 with now a decrease in the peak at 543 nm followed by a 

corresponding increase in the distinctive peak for SR101 at 602 nm [21]. 

 To test FRET efficiency in absence of the dansyl-donor system, we repeated our studies 

in presence of the control–SCM; the non-chromophoric cross-linked micelle system. Fig. 4b 

displays an absence of FRET for the case where SCM + EY were titrated with SR101; thereby 

highlighting the importance of the donor antennas on the periphery of the nanoparticle to 

efficiently capture the incidental light and foster energy migration among the dyes.  

 

Conclusion 

In conclusion, we have demonstrated a facile preparation of fluorophore-labeled surface 

cross-linked-water-soluble nanoparticles using an easily performed one-pot click reaction. The 

significance of this design lies in its ability to amplify the magnitude of “antenna effect”. The 

micelle system facilitates an easy modification of the number of donors, where several of these 

chromophoric molecular species are capable to absorb the incident light and efficiently channel 

the excitation energy to a common energy acceptor. It is also noteworthy that the antenna effect 

can be further extended to three chromophores and the FRET nanoparticle ability can be applied 

to energy transfer triad dye series. This strategy could open new applications of chromophoric 

micelles in signal amplification and biological sensing. In addition, future work in this field is 

envisioned towards advancement in complex mimics of natural photosynthetic systems to 
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employ light energy in chemical reactions. 
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Experimental Section 

General Experimental Methods.  

All reagents and solvents were of ACS-certified grade or higher and used as received from 

commercial suppliers. Millipore water was used to prepare buffers and nanoparticles. 1H and 13C 

NMR spectra were recorded on a VARIAN MR-400 spectrometer. Dynamic light scattering 

(DLS) was performed on a PD2000DLSPLUS dynamic light scattering detector. Mass 

spectrometry was performed on AGILENT 6540 QTOF mass spectrometer. UV-Vis spectra were 

recorded on a Cary 100 Bio UV-Visible spectrophotometer and fluorescence spectra were 

recorded on a Varian Cary Eclipse Fluorescence spectrophotometer. 

 

Preparation of dansyl-SCMs  

1,4-Diazidobutane-2,3-diol (compound 3, 3.8 mg, 0.022 mmol), CuCl2 (13.5 µL of a 5 mg/mL 

aqueous solution, 0.5 µmol), and sodium ascorbate (49.5 µL of a 20 mg/mL aqueous solution, 5 

µmol) were added to a micellar solution of compound 2 (12 mg, 0.02 mmol) in Millipore water 

(2.0 mL). The reaction mixture was stirred slowly at room temperature for 24 h after which the 

mixture was dialyzed for 3 days against deionized water using 500 Da molecular weight cut-off 

tubing. 
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Determination of Critical Micelle Concentration (CMC) of compound 2 

To 12 separate vials, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, and 3 µL of the stock solution of 

surfactant 1 (26 mg, 0.043 mmol) in 2.5 mL Millipore water was added. Millipore water was 

added to each vial to make the total volume 2.0 mL. Fluorescence spectra were recorded at the 

excitation wavelength of 343 nm. The final results were based on duplicate experiments with 

separately prepared solutions. 

 

Fig. 5 Surfactant 2 I520 as a function of [2]. 

 

 

   
Fig. 6 Emission spectra (solid lines) and excitation spectra (broken lines) of energy donor 

dansyl-SCM–Set 5 (in red) and energy acceptor dye - eosin Y and calcein (in green), in Milli-

pore water. 
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Fig. 7 Emission spectra at λex = 343 nm of aqueous solution of control-SCM [7 µM] titrated with 

[EY] was 0.00, 0.020, 0.043, 0.083, 0.125, 0.168, 0.210, 0.250, 0.293, 0.343, 0.406 µM. 

 

 

 (a)      (b) 

        
Fig. 8 Distribution of hydrodynamic diameter of dansyl-SCM–Set 5 [7 µM] with addition of 

polyacrylic acid, sodium salt [0.4 µM] during titration study with EY, (a) with mass 

normalization and (b) without mass normalization. 
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Fig. 9 Comparison of emission (solid lines) and excitation spectra (broken lines) of donor 

system––dansyl-SCMs–Set 5 (red), energy acceptor––eosin Y (green) and secondary energy 

acceptor Sulforhodamine 101 (blue); in Milli-pore water. 

 
Syntheses 
 
Scheme 3. Synthesis of compound 2 
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Compound 4. A mixture of 5-amino-1-naphthalene sulfonic acid (6.00 g, 26.8 mmol), sodium 

bicarbonate (6.80 g, 80.6 mmol) and 1-bromododecane (9.60 mL, 40.2 mmol) in dimethyl 

formamide (50 mL) was stirred and heated at 125 ºC for 3 h. The mixture was poured into water 

(500 mL) containing sodium chloride (156 g), and pH was lowered from 8.9 to 3.0 with 

concentrated hydrochloric acid (~ 3 mL). The solid formed, was isolated by filtration, washed 

with water (3 × 50 mL) and dried under vacuum to give a brown powder. This solid was re-

dissolved in water (100 mL) by adding sodium hydrogen carbonate (3.50 g). Concentrated HCl 

(~ 1 mL) was added drop-wise to lower down the pH from 7.9 to 3. Precipitate was separated by 

filtration, dried under high vacuum and then recrystallized using 2:1 isopropanol/water to yield a 

dark brown solid (5.97 g, 57%). 1H NMR (400 MHz, 1:1 CDCl3/CD3OD, δ): 8.53 (d, J = 8.5 Hz, 

1H), 7.71 (d, J = 7.3 Hz, 1H), 7.44 (d, J = 8.6 Hz, 1H), 7.19 (dd, J = 8.7, 7.4 Hz, 1H), 7.11 (d, J 

= 7.8 Hz, 1H), 6.91 (t, J = 7.9 Hz, 1H), 3.24 – 3.15 (m, 2H), 1.69 (p, J = 7.7 Hz, 2H), 1.35 – 1.06 

(m, 18H), 0.77 (t, J = 6.8, 3H). 13C NMR (101 MHz, (CD3)2S=O, δ): 144.7, 130.1, 125.5, 125.2, 

125.0, 124.8, 122.6, 31.3, 29.1, 29.0, 28.9, 28.8, 28.8, 28.7, 28.7, 28.5, 26.2, 22.1, 14.0. ESI-

HRMS (m/z): [M - H]-, calcd for C22H32NO3S-, 390.2108; found 390.2103. 

Compound 5. Compound 4 (1.00 g, 2.55 mmol) was dissolved in water (40 mL) containing 

sodium bicarbonate (0.70 g, 7.68 mmol). The resulting solution was stirred at 15 ºC for 5 min 

and dimethyl sulfate (0.25 mL, 2.55 mmol) was added. After 6 h, another batch of dimethyl 

sulfate (0.25 mL, 2.55 mmol) was added to the reaction mixture. The solution was stirred at 

room temperature, overnight and then heated to 80 ºC for 0.5 h. After cooling to room 

temperature, the pH was adjusted to 3 using HCl (1 M). The solid, which formed overnight, was 

filtered, washed with water and dried under high vacuum to give a dark brown solid (0.97 g, 
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94%). 1H NMR (400 MHz, CD3OD, δ): 8.64 (d, J = 8.5 Hz, 1H), 8.32 – 8.23 (m, 2H), 7.64 – 

7.50 (m, 2H), 7.24 (d, J = 7.6 Hz, 1H), 3.05 (dd, J = 8.5, 6.5 Hz, 2H), 2.84 (s, 3H), 1.62 (p, J = 

7.2 Hz, 2H), 1.27 (m, 18H), 0.88 (t, J = 6.7 Hz, 3H). 13C NMR (101 MHz, (CD3)2S=O, δ): 144.7, 

130.2, 130.1, 125.3, 124.8, 109.6, 62.8, 52.8, 31.3, 31.3, 29.0, 28.9, 28.9, 28.8, 28.7, 28.6, 28.4, 

25.7, 22.1, 14.0. ESI-HRMS (m/z): [M - H]-, calcd for C23H34NO3S-, 404.2265; found 404.2268. 

Compound 6 [22]. A solution of triphenyl phosphine (0.15 g, 0.59 mmol) in anhydrous 

dichloromethane (3 mL) was added to a mixture of compound 5 (0.08 g, 0.19 mmol) and 

trichloroacetonitrile (0.06 mL, 0.59 mmol) dissolved in anhydrous dichloromethane (2 mL). The 

reaction mixture was heated to reflux for approximately 3.5 h, under inert atmosphere. After 

cooling to room temperature, the solvent was removed using rotary evaporator and the residue 

was purified by column chromatography over silica gel using 40:1 hexane/ethyl acetate as eluent 

to afford a bright yellow oily product (0.70 g, 87%). 1H NMR ((400 MHz, CDCl3, δ): 8.63 (d, J 

= 8.5 Hz, 1H), 8.36 (d, J = 8.5 Hz, 1H), 8.27 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.3 Hz, 1H), 7.47 (t, 

J = 7.1 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 3.04 – 2.92 (m, 2H), 2.77 (s, 3H), 1.58 – 1.48 (m, 2H), 

1.16 (m, 18H), 0.79 (t, J = 6.9Hz, 3H).13C NMR (101 MHz, cdcl3, δ) 152.2, 139.8, 133.5, 131.2, 

129.7, 129.6, 129.1, 123.0, 118.7, 117.8, 57.6, 43.0, 32.1, 29.8, 29.8, 29.8, 29.8, 29.8, 29.7, 29.6, 

27.6, 27.4, 22.9, 14.3. ESI-HRMS (m/z): [M]+, calcd for C23H34 ClNO2S, 424.2072; found 

424.2073.    

Compound 7. Ethylenediamine (0.36 mL, 5.41 mmol) was added dropwise to a solution of 

compound 6 (0.23 g, 0.54 mmol) in anhydrous dichloromethane (10 mL). After the reaction 

mixture was stirred for 15-20 min, at room temperature under inert atmosphere, the organic layer 

was washed with brine (7 × 10 mL), dried over anhydrous Na2SO4 and evaporated under vacuum 
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to yield a yellow oily product (0.23 g, 96%). 1H NMR 400 MHz, CD3OD, δ):  8.48 (d, J = 8.5 

Hz, 1H), 8.21 (dd, J = 25.9, 7.9 Hz, 2H), 7.46 (dt, J = 22.1, 7.9 Hz, 2H), 7.22 – 7.10 (m, 2H), 

2.97 (t, J = 7.5 Hz, 2H), 2.87 (t, J = 5.6 Hz, 2H), 2.76 (s, 3H), 2.68 (t, J = 5.6 Hz, 2H), 1.59 – 

1.51 (m, 2H), 1.29 – 1.12 (m, 22H), 0.81 (t, J = 6.8 Hz, 4H). 13C NMR (100 MHz, CDCl3, δ): 

151.9, 134.9, 130.9, 130.4, 129.8, 129.6, 128.4, 123.3, 119.1, 116.9, 57.6, 45.6, 42.8, 41.1, 32.1, 

29.9, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 27.7, 27.4, 22.8, 14.3. ESI-HRMS (m/z): [M + H]+, calcd 

for C25H42N3O2S+, 448.2992; found 448.2993.    

Compound 2 [22]. A mixture of compound 7 (0.13 g, 0.29 mmol) and sodium bicarbonate (38 

mg, 0.45 mmol) in dry acetonitrile (5 mL) was treated dropwise with a solution of propargyl 

bromide (0.04 mL, 0.45 mmol). After 6 h, another batch of propargyl bromide (0.04 mL, 0.45 

mmol) was added to the reaction mixture while being heated to reflux for total 18 h. The 

resulting solution was cooled to room temperature, filtered to remove sodium bicarbonate, 

concentrated under vacuum, re-dissolved in dichloromethane (30 mL) and washed several times 

with brine, dried using MgSO4, concentrated and then purified by column chromatography over 

silica gel using 1:8 methanol/CH2Cl2 as eluent to afford a viscous brown oily product (0.12 g, 

72%). 1H NMR (400 MHz, CDCl3, δ): 8.57 – 8.44 (m, 2H), 8.32 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 

7.2 Hz, 1H), 7.58 (t, J = 8.1 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.21 (s, 1H), 7.15 (d, J = 7.6 Hz, 

1H), 4.80 (s, 7H), 3.87 – 3.80 (m, 2H), 3.50 (q, J = 5.3, 4.7 Hz, 2H), 3.09 – 2.88 (m, 10H), 2.74 

(s, 3H), 1.52 (q, J = 6.9 Hz, 2H), 1.33 (t, J = 7.4 Hz, 7H), 1.19 (d, J = 11.6 Hz, 23H), 0.85 – 0.76 

(m, 4H). 13C NMR (101 MHz, cdcl3) δ 151.4, 134.0, 130.9, 130.4, 129.4, 128.9, 128.7, 122.8, 

119.6, 117.3, 77.3, 77.2, 77.0, 76.7, 70.0, 60.5, 57.4, 53.6, 51.0, 45.8, 42.8, 37.7, 31.9, 29.7, 29.6, 
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29.6, 29.5, 29.3, 27.5, 27.2, 22.6, 18.6, 17.4, 14.1. ESI-HRMS (m/z): [M - Cl]+, calcd for 

C34H48N3O2S+, 562.3462; found 562.3456.    

Spectra of key compounds: 

1H NMR spectrum of compound 4 

 

 

13C NMR spectrum of compound 4 
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1H NMR spectrum of compound 5 

 

 
13C NMR spectrum of compound 5 
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1H NMR spectrum of compound 6 

 
 
13C NMR spectrum of compound 6 
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1H NMR spectrum of compound 7 
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13C NMR spectrum of compound 7 

 
 
1H NMR spectrum of compound 1 

 
 
13C NMR spectrum of compound 1 
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CHAPTER 6 

GENERAL CONCLUSIONS 

 

This dissertation illustrates the preparation and study of different types of cross-

linked micellar systems. Covalently crosslinking the surfactants not only restricts their 

intermicellar exchange, but also created systems with profound differences from their 

noncovalent assemblies. Surface cross-linked micelles (SCMs) represent a versatile platform 

for multivalency allowing simple synthetic preparation and facile post-modification. In this 

work, these robust water-soluble nanoparticles demonstrated several interesting properties, 

including sensitivity to aqueous pH catalysis, ability to modify pKa value, easy surface and 

core functionalization, scaffold for a light harvesting system, and enhanced surface basicity. 

This dissertation summarized my research progress on the development of SCM based light 

harvesting models and environmentally controlled catalysis. 

We first explored of the physical properties of SCM. Specifically, the nanoparticle 

was shown to possess two binding sites, favoring polar and nonpolar excited states of the 

fluorescent probe. Compared to dynamic CTAB, cross-linking the micelles in SCM lead to 

better shielding of the guest molecules and prevented exposure to the bulk solvent. This 

initiated a slowing down of ESPT for polyanionic photoacid–pyranine, caused by 

enhancement in the “hydrophobic shielding” effect. Additionally, stronger surface basicity 

and the ability to stabilize anionic transition states make the polycationic SCMs suitable 

candidates to hydrolyze activated phosphate esters, at neutral pH. 
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In an effort to label the SCM with a catalytic group, we also synthesized an imidazole 

surfactant. The polycationic nature and local hydrophobicity of the prepared imidazole-

functionalized surface cross-linked micelles enables modification of the acid/base property of 

the functional group. The unusual ability of imidazole-SCM to catalyze ester hydrolysis 

(PNPA) under acidic conditions is an elegant way to demonstrate unique control of the 

microenvironment for catalysis selectivity and/or activity. Investigation into the hydrophobic 

effect was done by comparing imidazole*-SCM (with C16 chain) with imidazole-SCM. The 

result was an increased catalysis with imidazole*-SCM which validated our hypothesis, 

suggesting a beneficial role of C16 as a hydrophobic anchor. It works by not only positioning 

the imizadole groups in a relatively hydrophobic local environment, but also possibly 

bringing the catalytic groups closer to the polycationic micellar surface and making them 

more resistant towards protonation. Evidence for the enhanced surface basicity and local 

hydrophobicity of functionalized-SCM also comes from fluorescence studies of 2-naphtol 

and ANS, at different pHs. 

Continuing this work, we aimed to rationalize the influence of environment in 

aqueous nucleophilic catalysis.  Extending the functionalization ability, we were able to 

anchor the catalytic group-DMAP in the core of the SCM. This work also highlights the 

significance of engineering smart materials with ability to create channels and pores to 

facilitate mass transfer during catalysis. Efficient hydrolysis for different substrates (PNPA, 

PNPH and HPNPP) showed the ability of SCM(DMAP) to perform nucleophilic catalysis 

under acidic conditions. The effect was larger for SCM(DMAP), as the internal 

functionalized DMAP remained more pH resistant/active than the surface-functionalized 

DMAP-SCM. This work is a step towards highlighting synergic effects between a substrate’s 
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inherent nature and local environment of a catalytic group to achieve unconventional 

catalysis, as demonstrated by enzymes.  

Finally, we also worked towards synthesis and application of a chromophore labeled 

cross-linked micellar system as a light-harvesting model. Upon self-assembly and covalent 

capture of dansyl surfactants, we prepared an energy donor system with the ability to vary 

antenna chromophore density. Efficient transfer of energy from multiple chromophores (both 

intermicellar and intramicellar transfer) to a single acceptor (EY/calcein) was displayed. 

Energy migration involving triad dye system was also evaluated. Evidence for the acceptor 

molecule to function both as an energy sink and as an aggregation-causing agent comes from 

fluorescence and DLS studies. Unlike dansyl-SCM, no FRET was observed for non-

chromophore counterpart–SCM, indicating how critical is the presence of multiple 

chromophores at the micellar interface for the observed antenna effect. Our findings may 

encourage efforts towards application of multifunctional cross-linked micellar systems as 

sensors, photocatalytic units, dye-sensitized solar cells, and artificial electronic and photonic 

devices. 
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